Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Pawian
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PWA
Pawian
Commits
8d6517f2
Commit
8d6517f2
authored
1 year ago
by
Bertram Kopf
Browse files
Options
Downloads
Patches
Plain Diff
added Mathematica script for the K-matrix f0-parametrization
parent
924980f7
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Scripts/Mathematica/KmatUtils.m
+1
-1
1 addition, 1 deletion
Scripts/Mathematica/KmatUtils.m
Scripts/Mathematica/Kmatf0.m
+261
-0
261 additions, 0 deletions
Scripts/Mathematica/Kmatf0.m
with
262 additions
and
1 deletion
Scripts/Mathematica/KmatUtils.m
+
1
−
1
View file @
8d6517f2
...
...
@@ -56,7 +56,7 @@ BWBarrier[l_, q_, q0_]:=
]
;
(* elasticity *)
Sii
[
s
_,
m1
_,
m2
_,
Tii
_
]
:=
1.
+
2
I
Sqrt
[
Re
[
rho
[
s
,
m1
,
m2
]]]
Tii
Sqrt
[
Re
[
rho
[
s
,
m1
,
m2
]]]
;
Sii
[
s
_,
m1
_,
m2
_,
Tii
_
]
:=
1.
+
2
.
I
Sqrt
[
Re
[
rho
[
s
,
m1
,
m2
]]]
Tii
Sqrt
[
Re
[
rho
[
s
,
m1
,
m2
]]]
;
(* extract delta phase of an Argand plot *)
...
...
This diff is collapsed.
Click to expand it.
Scripts/Mathematica/Kmatf0.m
0 → 100644
+
261
−
0
View file @
8d6517f2
(* Copyright 2023
Bertram Kopf (bertram@ep1.rub.de)
Meike Kuessner (mkuessner@ep1.rub.de)
Ruhr-Universität Bochum
This file is part of Pawian.
Pawian is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Pawian is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Pawian. If not, see <http://www.gnu.org/licenses/>
***********************************************************************************************
This Mathematica-script calculates some relevant quantities for the scattering process based on the K-matrix parametrization of the f0-wave published in Eur. Phys. J. C81 (2021) no.12, 1056; doi:10.1140/epjc/s10052-021-09821-2; arXiv:2008.11566.
*)
Get
[
FileNameJoin
[{
Directory
[]
,
"KmatUtils.m"
}]]
(* Precision[1.2]; *)
(* Precision[12/10]; *)
(* masses of the decay products *)
mpi
:=
0.13957
;
(* meta := 0.547; *)
meta
:=
0.547862
;
(* m2pi := 2 mpi; *)
m2pi
:=
0.26996
;
mKp
:=
0.49367
;
mK0
:=
0.497614
;
metaprime
:=
0.95778
;
(* K-matrix parameter *)
mf0500
:=
0.5146109988244556
;
mf0980
:=
0.9062999999986513
;
mf01370
:=
1.23089000002673
;
mf01500
:=
1.461043944511787
;
mf01710
:=
1.696114327468766
;
gpipif0500
:=
0.749866997688989
;
g4pif0500
:=
-
0.01257099832673861
;
gKKf0500
:=
0.2753599978535977
;
getaetaf0500
:=
-
0.1510199937514032
;
getaetaprimef0500
:=
0.3610299929020451
;
gpipif0980
:=
0.06400735441028882
;
g4pif0980
:=
0.002039993700021009
;
gKKf0980
:=
0.7741299935288173
;
getaetaf0980
:=
0.5099954460483236
;
getaetaprimef0980
:=
0.131119996207024
;
gpipif01370
:=
-
0.2341669602361275
;
g4pif01370
:=
-
0.01031664796738707
;
gKKf01370
:=
0.7228310629513335
;
getaetaf01370
:=
0.1193373160160431
;
getaetaprimef01370
:=
0.3679219171982366
;
gpipif01500
:=
0.01270001206662291
;
g4pif01500
:=
0.2670000044701449
;
gKKf01500
:=
0.09214335545338775
;
getaetaf01500
:=
0.02742288751616556
;
getaetaprimef01500
:=
-
0.04024795048926635
;
gpipif01710
:=
-
0.1424226773316178
;
g4pif01710
:=
0.2277971435654336
;
gKKf01710
:=
0.1598113086438209
;
getaetaf01710
:=
0.162720778677211
;
getaetaprimef01710
:=
-
0.1739657300479793
;
c00
:=
0.03728069393605827
;
c01
:=
0.
;
c02
:=
-
0.01398000003371962
;
c03
:=
-
0.02202999981025169
;
c04
:=
0.01397000015464572
;
c11
:=
0.
;
c12
:=
0.
;
c13
:=
0.
;
c14
:=
0.
;
c22
:=
0.02349000177968514
;
c23
:=
0.03100999997418123
;
c24
:=
-
0.04002991964937379
;
c33
:=
-
0.1376928637961125
;
c34
:=
-
0.06721849488474475
;
c44
:=
-
0.2840099964663654
;
s0
:=
0.009112500000000001
;
s0Adler
:=
0.1139704455925943
;
snormAdler
=
1.
;
Kmatf0
[
s
_
]
:=
Module
[{
resultMatr
}
,
(* Which[Re[s]<0.01, s=0.1 + I 0.0001]; *)
(* Print["s: ", s]; *)
KPiPitoPiPi
:=
(
gpipif0500
gpipif0500
/
(
mf0500
mf0500
-
s
)
+
c00
)
+
(
gpipif0980
gpipif0980
/
(
mf0980
mf0980
-
s
)
+
c00
)
+
(
gpipif01370
gpipif01370
/
(
mf01370
mf01370
-
s
)
+
c00
)
+
(
gpipif01500
gpipif01500
/
(
mf01500
mf01500
-
s
)
+
c00
)
+
(
gpipif01710
gpipif01710
/
(
mf01710
mf01710
-
s
)
+
c00
)
;
(* Print["KPiPitoPiPi: " , KPiPitoPiPi]; *)
KPiPito4Pi
:=
(
gpipif0500
g4pif0500
/
(
mf0500
mf0500
-
s
)
+
c01
)
+
(
gpipif0980
g4pif0980
/
(
mf0980
mf0980
-
s
)
+
c01
)
+
(
gpipif01370
g4pif01370
/
(
mf01370
mf01370
-
s
)
+
c01
)
+
(
gpipif01500
g4pif01500
/
(
mf01500
mf01500
-
s
)
+
c01
)
+
(
gpipif01710
g4pif01710
/
(
mf01710
mf01710
-
s
)
+
c01
)
;
(* Print["KPiPito4Pi: " , KPiPito4Pi];*)
KPiPitoKK
:=
(
gpipif0500
gKKf0500
/
(
mf0500
mf0500
-
s
)
+
c02
)
+
(
gpipif0980
gKKf0980
/
(
mf0980
mf0980
-
s
)
+
c02
)
+
(
gpipif01370
gKKf01370
/
(
mf01370
mf01370
-
s
)
+
c02
)
+
(
gpipif01500
gKKf01500
/
(
mf01500
mf01500
-
s
)
+
c02
)
+
(
gpipif01710
gKKf01710
/
(
mf01710
mf01710
-
s
)
+
c02
)
;
(* Print["KPiPitoKK: " , KPiPitoKK]; *)
KPiPitoEtaEta
:=
(
gpipif0500
getaetaf0500
/
(
mf0500
mf0500
-
s
)
+
c03
)
+
(
gpipif0980
getaetaf0980
/
(
mf0980
mf0980
-
s
)
+
c03
)
+
(
gpipif01370
getaetaf01370
/
(
mf01370
mf01370
-
s
)
+
c03
)
+
(
gpipif01500
getaetaf01500
/
(
mf01500
mf01500
-
s
)
+
c03
)
+
(
gpipif01710
getaetaf01710
/
(
mf01710
mf01710
-
s
)
+
c03
)
;
(* Print["KPiPitoEtaEta: " , KPiPitoEtaEta]; *)
KPiPitoEtaEtaprime
:=
(
gpipif0500
getaetaprimef0500
/
(
mf0500
mf0500
-
s
)
+
c04
)
+
(
gpipif0980
getaetaprimef0980
/
(
mf0980
mf0980
-
s
)
+
c04
)
+
(
gpipif01370
getaetaprimef01370
/
(
mf01370
mf01370
-
s
)
+
c04
)
+
(
gpipif01500
getaetaprimef01500
/
(
mf01500
mf01500
-
s
)
+
c04
)
+
(
gpipif01710
getaetaprimef01710
/
(
mf01710
mf01710
-
s
)
+
c04
)
;
(* Print["KPiPitoEtaEtaprime: " , KPiPitoEtaEtaprime]; *)
K4Pito4Pi
=
(
g4pif0500
g4pif0500
/
(
mf0500
mf0500
-
s
)
+
c11
)
+
(
g4pif0980
g4pif0980
/
(
mf0980
mf0980
-
s
)
+
c11
)
+
(
g4pif01370
g4pif01370
/
(
mf01370
mf01370
-
s
)
+
c11
)
+
(
g4pif01500
g4pif01500
/
(
mf01500
mf01500
-
s
)
+
c11
)
+
(
g4pif01710
g4pif01710
/
(
mf01710
mf01710
-
s
)
+
c11
)
;
K4PitoKK
=
(
g4pif0500
gKKf0500
/
(
mf0500
mf0500
-
s
)
+
c12
)
+
(
g4pif0980
gKKf0980
/
(
mf0980
mf0980
-
s
)
+
c12
)
+
(
g4pif01370
gKKf01370
/
(
mf01370
mf01370
-
s
)
+
c12
)
+
(
g4pif01500
gKKf01500
/
(
mf01500
mf01500
-
s
)
+
c12
)
+
(
g4pif01710
gKKf01710
/
(
mf01710
mf01710
-
s
)
+
c12
)
;
K4PitoEtaEta
=
(
g4pif0500
getaetaf0500
/
(
mf0500
mf0500
-
s
)
+
c13
)
+
(
g4pif0980
getaetaf0980
/
(
mf0980
mf0980
-
s
)
+
c13
)
+
(
g4pif01370
getaetaf01370
/
(
mf01370
mf01370
-
s
)
+
c13
)
+
(
g4pif01500
getaetaf01500
/
(
mf01500
mf01500
-
s
)
+
c13
)
+
(
g4pif01710
getaetaf01710
/
(
mf01710
mf01710
-
s
)
+
c13
)
;
K4PitoEtaEtaprime
=
(
g4pif0500
getaetaprimef0500
/
(
mf0500
mf0500
-
s
)
+
c14
)
+
(
g4pif0980
getaetaprimef0980
/
(
mf0980
mf0980
-
s
)
+
c14
)
+
(
g4pif01370
getaetaprimef01370
/
(
mf01370
mf01370
-
s
)
+
c14
)
+
(
g4pif01500
getaetaprimef01500
/
(
mf01500
mf01500
-
s
)
+
c14
)
+
(
g4pif01710
getaetaprimef01710
/
(
mf01710
mf01710
-
s
)
+
c14
)
;
KKKtoKK
=
(
gKKf0500
gKKf0500
/
(
mf0500
mf0500
-
s
)
+
c22
)
+
(
gKKf0980
gKKf0980
/
(
mf0980
mf0980
-
s
)
+
c22
)
+
(
gKKf01370
gKKf01370
/
(
mf01370
mf01370
-
s
)
+
c22
)
+
(
gKKf01500
gKKf01500
/
(
mf01500
mf01500
-
s
)
+
c22
)
+
(
gKKf01710
gKKf01710
/
(
mf01710
mf01710
-
s
)
+
c22
)
;
KKKtoEtaEta
=
(
gKKf0500
getaetaf0500
/
(
mf0500
mf0500
-
s
)
+
c23
)
+
(
gKKf0980
getaetaf0980
/
(
mf0980
mf0980
-
s
)
+
c23
)
+
(
gKKf01370
getaetaf01370
/
(
mf01370
mf01370
-
s
)
+
c23
)
+
(
gKKf01500
getaetaf01500
/
(
mf01500
mf01500
-
s
)
+
c23
)
+
(
gKKf01710
getaetaf01710
/
(
mf01710
mf01710
-
s
)
+
c23
)
;
KKKtoEtaEtaprime
=
(
gKKf0500
getaetaprimef0500
/
(
mf0500
mf0500
-
s
)
+
c24
)
+
(
gKKf0980
getaetaprimef0980
/
(
mf0980
mf0980
-
s
)
+
c24
)
+
(
gKKf01370
getaetaprimef01370
/
(
mf01370
mf01370
-
s
)
+
c24
)
+
(
gKKf01500
getaetaprimef01500
/
(
mf01500
mf01500
-
s
)
+
c24
)
+
(
gKKf01710
getaetaprimef01710
/
(
mf01710
mf01710
-
s
)
+
c24
)
;
KEtaEtatoEtaEta
=
(
getaetaf0500
getaetaf0500
/
(
mf0500
mf0500
-
s
)
+
c33
)
+
(
getaetaf0980
getaetaf0980
/
(
mf0980
mf0980
-
s
)
+
c33
)
+
(
getaetaf01370
getaetaf01370
/
(
mf01370
mf01370
-
s
)
+
c33
)
+
(
getaetaf01500
getaetaf01500
/
(
mf01500
mf01500
-
s
)
+
c33
)
+
(
getaetaf01710
getaetaf01710
/
(
mf01710
mf01710
-
s
)
+
c33
)
;
KEtaEtatoEtaEtaprime
=
(
getaetaf0500
getaetaprimef0500
/
(
mf0500
mf0500
-
s
)
+
c34
)
+
(
getaetaf0980
getaetaprimef0980
/
(
mf0980
mf0980
-
s
)
+
c34
)
+
(
getaetaf01370
getaetaprimef01370
/
(
mf01370
mf01370
-
s
)
+
c34
)
+
(
getaetaf01500
getaetaprimef01500
/
(
mf01500
mf01500
-
s
)
+
c34
)
+
(
getaetaf01710
getaetaprimef01710
/
(
mf01710
mf01710
-
s
)
+
c34
)
;
KEtaEtaprimetoEtaEtaprime
=
(
getaetaprimef0500
getaetaprimef0500
/
(
mf0500
mf0500
-
s
)
+
c44
)
+
(
getaetaprimef0980
getaetaprimef0980
/
(
mf0980
mf0980
-
s
)
+
c44
)
+
(
getaetaprimef01370
getaetaprimef01370
/
(
mf01370
mf01370
-
s
)
+
c44
)
+
(
getaetaprimef01500
getaetaprimef01500
/
(
mf01500
mf01500
-
s
)
+
c44
)
+
(
getaetaprimef01710
getaetaprimef01710
/
(
mf01710
mf01710
-
s
)
+
c44
)
;
adlerTerm
=
(
s
-
s0
)
/
snormAdler
;
resultMatr
=
{
{
KPiPitoPiPi
,
KPiPito4Pi
,
KPiPitoKK
,
KPiPitoEtaEta
,
KPiPitoEtaEtaprime
}
,
{
KPiPito4Pi
,
K4Pito4Pi
,
K4PitoKK
,
K4PitoEtaEta
,
K4PitoEtaEtaprime
}
,
{
KPiPitoKK
,
K4PitoKK
,
KKKtoKK
,
KKKtoEtaEta
,
KKKtoEtaEtaprime
}
,
{
KPiPitoEtaEta
,
K4PitoEtaEta
,
KKKtoEtaEta
,
KEtaEtatoEtaEta
,
KEtaEtatoEtaEtaprime
}
,
{
KPiPitoEtaEtaprime
,
K4PitoEtaEtaprime
,
KKKtoEtaEtaprime
,
KEtaEtatoEtaEtaprime
,
KEtaEtaprimetoEtaEtaprime
}
}
;
resultMatr
=
adlerTerm
resultMatr
;
resultMatr
]
;
ChewMmat
[
s
_
]
:=
{{
c
[
s
,
mpi
,
mpi
]
,
0.
,
0.
,
0.
,
0.
}
,
{
0.
,
c
[
s
,
m2pi
,
m2pi
]
,
0.
,
0.
,
0.
}
,
{
0.
,
0.
,
c
[
s
,
mKp
,
mK0
]
,
0.
,
0.
}
,
{
0.
,
0.
,
0.
,
c
[
s
,
meta
,
meta
]
,
0.
}
,
{
0.
,
0.
,
0.
,
0.
,
c
[
s
,
meta
,
metaprime
]}
}
;
KChewMmat
[
s
_
]
:=
Kmatf0
[
s
]
.
ChewMmat
[
s
]
;
(* Print["CM[1.8]: ", ChewMmat[1.8] // MatrixForm]; *)
Idmat
:=
IdentityMatrix
[
5
]
;
IKChewMmat
[
s
_
]
:=
Idmat
+
KChewMmat
[
s
]
;
invIKChewMmat
[
s
_
]
:=
Inverse
[
IKChewMmat
[
s
]]
;
Tmat
[
s
_
]
:=
invIKChewMmat
[
s
]
.
Kmatf0
[
s
]
;
(* Print["Tmat[1.8]: ", Tmat[1.8 + I 0.00001] // MatrixForm]; *)
f0PiPitoPiPiTreal
=
Plot
[
Re
[
Tmat
[
b
*
b
+
I
0.000001
][[
1
,
1
]]]
,
{
b
,
mpi
+
mpi
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
Re
[
T
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)]}]
;
Export
[
"f0PiPitoPiPiTreal.pdf"
,
f0PiPitoPiPiTreal
]
;
f0PiPitoPiPiTimag
=
Plot
[
Im
[
Tmat
[
b
*
b
+
I
0.000001
][[
1
,
1
]]]
,
{
b
,
mpi
+
mpi
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
Im
[
T
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)]}]
;
Export
[
"f0PiPitoPiPiTimag.pdf"
,
f0PiPitoPiPiTimag
]
;
f0PiPiElasticity
=
Plot
[
Abs
[
Sii
[
b
*
b
+
I
0.000001
,
mpi
,
mpi
,
Tmat
[
b
*
b
+
I
0.000001
][[
1
,
1
]]]]
,
{
b
,
mpi
+
mpi
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
\[Eta]
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)}]
;
Export
[
"f0PiPiElasticity.pdf"
,
f0PiPiElasticity
]
;
f0PiPitoPiPiPhase
=
Plot
[
deltaArgand
[
m
,
mpi
,
mpi
,
Tmat
[
m
*
m
+
I
0.000001
][[
1
,
1
]]]
,
{
m
,
mpi
+
mpi
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
\[Delta]
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)}]
;
Export
[
"f0PiPitoPiPiPhase.pdf"
,
f0PiPitoPiPiPhase
]
;
f0PiPitoPiPiArgand
=
ParametricPlot
[{
rho
[
m
*
m
,
mpi
,
mpi
]
Re
[
Tmat
[
m
*
m
+
I
0.000001
][[
1
,
1
]]]
,
rho
[
m
*
m
,
mpi
,
mpi
]
Im
[
Tmat
[
m
*
m
+
I
0.000001
][[
1
,
1
]]]}
,
{
m
,
mpi
+
mpi
,
1.9
}
,
AxesLabel
->
{
Re
[
T
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)]
,
Im
[
T
(
\[Pi]\[Pi]
->
\[Pi]\[Pi]
)]}]
;
Export
[
"f0PiPitoPiArgand.pdf"
,
f0PiPitoPiPiArgand
]
;
f0PiPitoKKTsqr
=
Plot
[
{
rho
[
m
*
m
,
mpi
,
mpi
]
rho
[
m
*
m
,
mKp
,
mK0
]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
3
]]]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
3
]]]}
,
{
m
,
mKp
+
mK0
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
"\[Rho](\[Pi]\[Pi])"
"\[Rho](KK)"
Abs
[
T
(
\[Pi]\[Pi]
->
KK
)]
Abs
[
T
(
\[Pi]\[Pi]
->
KK
)]}]
;
Export
[
"f0PiPitoKKArgandUnits.pdf"
,
f0PiPitoKKTsqr
]
;
f0PiPitoEtaEtaTsqr
=
Plot
[
{
rho
[
m
*
m
,
mpi
,
mpi
]
rho
[
m
*
m
,
meta
,
meta
]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
4
]]]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
4
]]]
}
,
{
m
,
meta
+
meta
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
"\[Rho](\[Pi]\[Pi])"
"\[Rho](\[Eta]\[Eta])"
Abs
[
T
(
\[Pi]\[Pi]
->
\[Eta]\[Eta]
)]
Abs
[
T
(
\[Pi]\[Pi]
->
\[Eta]\[Eta]
)]}]
;
Export
[
"f0PiPitoEtaEtaArgandUnits.pdf"
,
f0PiPitoEtaEtaTsqr
]
;
f0PiPitoEtaEtaprimeTsqr
=
Plot
[
{
rho
[
m
*
m
,
mpi
,
mpi
]
rho
[
m
*
m
,
meta
,
metaprime
]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
5
]]]
Norm
[
Tmat
[
m
*
m
+
I
0.0000001
][[
1
,
5
]]]
}
,
{
m
,
meta
+
metaprime
,
1.9
}
,
AxesLabel
->
{
M
[
GeV
/
(
c
c
)]
,
"\[Rho](\[Pi]\[Pi])"
"\[Rho](\[Eta]\[Eta]')"
Abs
[
T
(
\[Pi]\[Pi]
->
\[Eta]\[Eta]
'
)]
Abs
[
T
(
\[Pi]\[Pi]
->
\[Eta]\[Eta]
'
)]}]
;
Export
[
"f0PiPitoEtaEtaprimeArgandUnits.pdf"
,
f0PiPitoEtaEtaprimeTsqr
]
;
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment