diff --git a/Scripts/Mathematica/KmatUtils.m b/Scripts/Mathematica/KmatUtils.m index f8d00e49c5477a7fcce9026666990c2bb58901d9..ab95c2d496fadae43684ab4bd2df63f8f3184ea3 100644 --- a/Scripts/Mathematica/KmatUtils.m +++ b/Scripts/Mathematica/KmatUtils.m @@ -56,7 +56,7 @@ BWBarrier[l_, q_, q0_]:= ]; (* elasticity *) -Sii[s_, m1_, m2_, Tii_] := 1. + 2 I Sqrt[Re[rho[s,m1,m2]]] Tii Sqrt[Re[rho[s,m1,m2]]]; +Sii[s_, m1_, m2_, Tii_] := 1. + 2. I Sqrt[Re[rho[s,m1,m2]]] Tii Sqrt[Re[rho[s,m1,m2]]]; (* extract delta phase of an Argand plot *) diff --git a/Scripts/Mathematica/Kmatf0.m b/Scripts/Mathematica/Kmatf0.m new file mode 100644 index 0000000000000000000000000000000000000000..1575c610e97297d4f01841cdce26fc73e16d0552 --- /dev/null +++ b/Scripts/Mathematica/Kmatf0.m @@ -0,0 +1,261 @@ +(* Copyright 2023 + Bertram Kopf (bertram@ep1.rub.de) + Meike Kuessner (mkuessner@ep1.rub.de) + Ruhr-Universität Bochum + + This file is part of Pawian. + + Pawian is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Pawian is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Pawian. If not, see <http://www.gnu.org/licenses/> + +*********************************************************************************************** + This Mathematica-script calculates some relevant quantities for the scattering process based on the K-matrix parametrization of the f0-wave published in Eur. Phys. J. C81 (2021) no.12, 1056; doi:10.1140/epjc/s10052-021-09821-2; arXiv:2008.11566. + *) + + +Get[FileNameJoin[{Directory[], "KmatUtils.m"}]] + +(* Precision[1.2]; *) + (* Precision[12/10]; *) + +(* masses of the decay products *) +mpi := 0.13957; +(* meta := 0.547; *) +meta := 0.547862; +(* m2pi := 2 mpi; *) +m2pi := 0.26996; +mKp := 0.49367; +mK0 := 0.497614; +metaprime := 0.95778; + +(* K-matrix parameter *) +mf0500 := 0.5146109988244556; +mf0980 := 0.9062999999986513; +mf01370 := 1.23089000002673; +mf01500 := 1.461043944511787; +mf01710 := 1.696114327468766; + +gpipif0500 := 0.749866997688989; +g4pif0500 := -0.01257099832673861; +gKKf0500 := 0.2753599978535977; +getaetaf0500 := -0.1510199937514032; +getaetaprimef0500 := 0.3610299929020451; + +gpipif0980 := 0.06400735441028882; +g4pif0980 := 0.002039993700021009; +gKKf0980 := 0.7741299935288173; +getaetaf0980 := 0.5099954460483236; +getaetaprimef0980 := 0.131119996207024; + +gpipif01370 := -0.2341669602361275; +g4pif01370 := -0.01031664796738707; +gKKf01370 := 0.7228310629513335; +getaetaf01370 := 0.1193373160160431; +getaetaprimef01370 := 0.3679219171982366; + +gpipif01500 := 0.01270001206662291; +g4pif01500 := 0.2670000044701449; +gKKf01500 := 0.09214335545338775; +getaetaf01500 := 0.02742288751616556; +getaetaprimef01500 := -0.04024795048926635; + +gpipif01710 := -0.1424226773316178; +g4pif01710 := 0.2277971435654336; +gKKf01710 := 0.1598113086438209; +getaetaf01710 := 0.162720778677211; +getaetaprimef01710 := -0.1739657300479793; + +c00 := 0.03728069393605827; +c01 := 0.; +c02 := -0.01398000003371962; +c03 := -0.02202999981025169; +c04 := 0.01397000015464572; +c11 := 0.; +c12 := 0.; +c13 := 0.; +c14 := 0.; +c22 := 0.02349000177968514; +c23 := 0.03100999997418123; +c24 := -0.04002991964937379; +c33 := -0.1376928637961125; +c34 := -0.06721849488474475; +c44 := -0.2840099964663654; + + +s0 := 0.009112500000000001; +s0Adler := 0.1139704455925943; +snormAdler = 1.; + + +Kmatf0[s_]:= + Module[{resultMatr}, + (* Which[Re[s]<0.01, s=0.1 + I 0.0001]; *) + (* Print["s: ", s]; *) + + KPiPitoPiPi:=(gpipif0500 gpipif0500/(mf0500 mf0500-s)+c00) + +(gpipif0980 gpipif0980/(mf0980 mf0980-s)+c00) + +(gpipif01370 gpipif01370/(mf01370 mf01370-s)+c00) + +(gpipif01500 gpipif01500/(mf01500 mf01500-s)+c00) + +(gpipif01710 gpipif01710/(mf01710 mf01710-s)+c00); + (* Print["KPiPitoPiPi: " , KPiPitoPiPi]; *) + + KPiPito4Pi:=(gpipif0500 g4pif0500/(mf0500 mf0500-s)+c01) + +(gpipif0980 g4pif0980/(mf0980 mf0980-s)+c01) + +(gpipif01370 g4pif01370/(mf01370 mf01370-s)+c01) + +(gpipif01500 g4pif01500/(mf01500 mf01500-s)+c01) + +(gpipif01710 g4pif01710/(mf01710 mf01710-s)+c01); + (* Print["KPiPito4Pi: " , KPiPito4Pi];*) + + KPiPitoKK:=(gpipif0500 gKKf0500/(mf0500 mf0500-s)+c02) + +(gpipif0980 gKKf0980/(mf0980 mf0980-s)+c02) + +(gpipif01370 gKKf01370/(mf01370 mf01370-s)+c02) + +(gpipif01500 gKKf01500/(mf01500 mf01500-s)+c02) + +(gpipif01710 gKKf01710/(mf01710 mf01710-s)+c02); + (* Print["KPiPitoKK: " , KPiPitoKK]; *) + + KPiPitoEtaEta:=(gpipif0500 getaetaf0500/(mf0500 mf0500-s)+c03) + +(gpipif0980 getaetaf0980/(mf0980 mf0980-s)+c03) + +(gpipif01370 getaetaf01370/(mf01370 mf01370-s)+c03) + +(gpipif01500 getaetaf01500/(mf01500 mf01500-s)+c03) + +(gpipif01710 getaetaf01710/(mf01710 mf01710-s)+c03); + (* Print["KPiPitoEtaEta: " , KPiPitoEtaEta]; *) + + KPiPitoEtaEtaprime:=(gpipif0500 getaetaprimef0500/(mf0500 mf0500-s)+c04) + +(gpipif0980 getaetaprimef0980/(mf0980 mf0980-s)+c04) + +(gpipif01370 getaetaprimef01370/(mf01370 mf01370-s)+c04) + +(gpipif01500 getaetaprimef01500/(mf01500 mf01500-s)+c04) + +(gpipif01710 getaetaprimef01710/(mf01710 mf01710-s)+c04); + (* Print["KPiPitoEtaEtaprime: " , KPiPitoEtaEtaprime]; *) + + K4Pito4Pi=(g4pif0500 g4pif0500/(mf0500 mf0500-s)+c11) + +(g4pif0980 g4pif0980/(mf0980 mf0980-s)+c11) + +(g4pif01370 g4pif01370/(mf01370 mf01370-s)+c11) + +(g4pif01500 g4pif01500/(mf01500 mf01500-s)+c11) + +(g4pif01710 g4pif01710/(mf01710 mf01710-s)+c11); + + K4PitoKK=(g4pif0500 gKKf0500/(mf0500 mf0500-s)+c12) + +(g4pif0980 gKKf0980/(mf0980 mf0980-s)+c12) + +(g4pif01370 gKKf01370/(mf01370 mf01370-s)+c12) + +(g4pif01500 gKKf01500/(mf01500 mf01500-s)+c12) + +(g4pif01710 gKKf01710/(mf01710 mf01710-s)+c12); + + K4PitoEtaEta=(g4pif0500 getaetaf0500/(mf0500 mf0500-s)+c13) + +(g4pif0980 getaetaf0980/(mf0980 mf0980-s)+c13) + +(g4pif01370 getaetaf01370/(mf01370 mf01370-s)+c13) + +(g4pif01500 getaetaf01500/(mf01500 mf01500-s)+c13) + +(g4pif01710 getaetaf01710/(mf01710 mf01710-s)+c13); + + K4PitoEtaEtaprime=(g4pif0500 getaetaprimef0500/(mf0500 mf0500-s)+c14) + +(g4pif0980 getaetaprimef0980/(mf0980 mf0980-s)+c14) + +(g4pif01370 getaetaprimef01370/(mf01370 mf01370-s)+c14) + +(g4pif01500 getaetaprimef01500/(mf01500 mf01500-s)+c14) + +(g4pif01710 getaetaprimef01710/(mf01710 mf01710-s)+c14); + + + KKKtoKK=(gKKf0500 gKKf0500/(mf0500 mf0500-s)+c22) + +(gKKf0980 gKKf0980/(mf0980 mf0980-s)+c22) + +(gKKf01370 gKKf01370/(mf01370 mf01370-s)+c22) + +(gKKf01500 gKKf01500/(mf01500 mf01500-s)+c22) + +(gKKf01710 gKKf01710/(mf01710 mf01710-s)+c22); + + KKKtoEtaEta=(gKKf0500 getaetaf0500/(mf0500 mf0500-s)+c23) + +(gKKf0980 getaetaf0980/(mf0980 mf0980-s)+c23) + +(gKKf01370 getaetaf01370/(mf01370 mf01370-s)+c23) + +(gKKf01500 getaetaf01500/(mf01500 mf01500-s)+c23) + +(gKKf01710 getaetaf01710/(mf01710 mf01710-s)+c23); + + KKKtoEtaEtaprime=(gKKf0500 getaetaprimef0500/(mf0500 mf0500-s)+c24) + +(gKKf0980 getaetaprimef0980/(mf0980 mf0980-s)+c24) + +(gKKf01370 getaetaprimef01370/(mf01370 mf01370-s)+c24) + +(gKKf01500 getaetaprimef01500/(mf01500 mf01500-s)+c24) + +(gKKf01710 getaetaprimef01710/(mf01710 mf01710-s)+c24); + + + KEtaEtatoEtaEta=(getaetaf0500 getaetaf0500/(mf0500 mf0500-s)+c33) + +(getaetaf0980 getaetaf0980/(mf0980 mf0980-s)+c33) + +(getaetaf01370 getaetaf01370/(mf01370 mf01370-s)+c33) + +(getaetaf01500 getaetaf01500/(mf01500 mf01500-s)+c33) + +(getaetaf01710 getaetaf01710/(mf01710 mf01710-s)+c33); + + KEtaEtatoEtaEtaprime=(getaetaf0500 getaetaprimef0500/(mf0500 mf0500-s)+c34) + +(getaetaf0980 getaetaprimef0980/(mf0980 mf0980-s)+c34) + +(getaetaf01370 getaetaprimef01370/(mf01370 mf01370-s)+c34) + +(getaetaf01500 getaetaprimef01500/(mf01500 mf01500-s)+c34) + +(getaetaf01710 getaetaprimef01710/(mf01710 mf01710-s)+c34); + + + KEtaEtaprimetoEtaEtaprime=(getaetaprimef0500 getaetaprimef0500/(mf0500 mf0500-s)+c44) + +(getaetaprimef0980 getaetaprimef0980/(mf0980 mf0980-s)+c44) + +(getaetaprimef01370 getaetaprimef01370/(mf01370 mf01370-s)+c44) + +(getaetaprimef01500 getaetaprimef01500/(mf01500 mf01500-s)+c44) + +(getaetaprimef01710 getaetaprimef01710/(mf01710 mf01710-s)+c44); + + adlerTerm=(s - s0)/snormAdler; + + + resultMatr = { + {KPiPitoPiPi, KPiPito4Pi, KPiPitoKK, KPiPitoEtaEta, KPiPitoEtaEtaprime}, + {KPiPito4Pi, K4Pito4Pi, K4PitoKK, K4PitoEtaEta, K4PitoEtaEtaprime}, + {KPiPitoKK, K4PitoKK, KKKtoKK, KKKtoEtaEta, KKKtoEtaEtaprime}, + {KPiPitoEtaEta, K4PitoEtaEta, KKKtoEtaEta, KEtaEtatoEtaEta, KEtaEtatoEtaEtaprime}, + {KPiPitoEtaEtaprime, K4PitoEtaEtaprime, KKKtoEtaEtaprime, KEtaEtatoEtaEtaprime, KEtaEtaprimetoEtaEtaprime} + }; + resultMatr = adlerTerm resultMatr; + resultMatr + ]; + + +ChewMmat[s_]:={{c[s,mpi,mpi], 0., 0., 0., 0.}, + {0., c[s,m2pi,m2pi], 0. ,0., 0.}, + {0., 0., c[s,mKp,mK0], 0., 0.}, + {0., 0., 0., c[s,meta,meta], 0.}, + {0., 0., 0., 0., c[s,meta,metaprime]} + }; + + +KChewMmat[s_]:=Kmatf0[s].ChewMmat[s]; +(* Print["CM[1.8]: ", ChewMmat[1.8] // MatrixForm]; *) + + +Idmat:=IdentityMatrix[5]; +IKChewMmat[s_]:= Idmat + KChewMmat[s]; + +invIKChewMmat[s_]:= Inverse[IKChewMmat[s]]; + +Tmat[s_]:=invIKChewMmat[s].Kmatf0[s]; + + (* Print["Tmat[1.8]: ", Tmat[1.8 + I 0.00001] // MatrixForm]; *) + +f0PiPitoPiPiTreal=Plot[Re[Tmat[b*b + I 0.000001][[1,1]]],{b, mpi+mpi, 1.9}, AxesLabel->{M [GeV/(c c)], Re[T(\[Pi]\[Pi] -> \[Pi]\[Pi])]}]; +Export["f0PiPitoPiPiTreal.pdf", f0PiPitoPiPiTreal]; +f0PiPitoPiPiTimag=Plot[Im[Tmat[b*b + I 0.000001][[1,1]]],{b, mpi+mpi, 1.9}, AxesLabel->{M [GeV/(c c)], Im[T(\[Pi]\[Pi] -> \[Pi]\[Pi])]}]; +Export["f0PiPitoPiPiTimag.pdf", f0PiPitoPiPiTimag]; + +f0PiPiElasticity=Plot[Abs[Sii[b*b + I 0.000001, mpi, mpi, Tmat[b*b + I 0.000001][[1,1]]]],{b, mpi+mpi, 1.9}, AxesLabel->{M [GeV/(c c)], \[Eta](\[Pi]\[Pi] -> \[Pi]\[Pi])}]; +Export["f0PiPiElasticity.pdf", f0PiPiElasticity]; + +f0PiPitoPiPiPhase=Plot[deltaArgand[m, mpi, mpi, Tmat[m*m + I 0.000001][[1,1]]],{m, mpi+mpi, 1.9}, AxesLabel->{M [GeV/(c c)], \[Delta](\[Pi]\[Pi] -> \[Pi]\[Pi])}]; +Export["f0PiPitoPiPiPhase.pdf", f0PiPitoPiPiPhase]; + +f0PiPitoPiPiArgand=ParametricPlot[{rho[m*m,mpi,mpi] Re[Tmat[m*m + I 0.000001][[1,1]]], rho[m*m,mpi,mpi] Im[Tmat[m*m + I 0.000001][[1,1]]]},{m, mpi+mpi, 1.9}, AxesLabel->{Re[T(\[Pi]\[Pi] -> \[Pi]\[Pi])], Im[T(\[Pi]\[Pi] -> \[Pi]\[Pi])]}]; +Export["f0PiPitoPiArgand.pdf", f0PiPitoPiPiArgand]; + +f0PiPitoKKTsqr=Plot[ { rho[m*m,mpi,mpi] rho[m*m,mKp,mK0] Norm[Tmat[m*m + I 0.0000001][[1,3]]] Norm[Tmat[m*m + I 0.0000001][[1,3]]]}, {m, mKp+mK0, 1.9}, AxesLabel->{M [GeV/(c c)], "\[Rho](\[Pi]\[Pi])" "\[Rho](KK)" Abs[T(\[Pi]\[Pi] -> KK)] Abs[T(\[Pi]\[Pi] -> KK)]}]; +Export["f0PiPitoKKArgandUnits.pdf", f0PiPitoKKTsqr]; + +f0PiPitoEtaEtaTsqr=Plot[ { rho[m*m,mpi,mpi] rho[m*m,meta,meta] Norm[Tmat[m*m + I 0.0000001][[1,4]]] Norm[Tmat[m*m + I 0.0000001][[1,4]]] }, {m, meta+meta, 1.9}, AxesLabel->{M [GeV/(c c)], "\[Rho](\[Pi]\[Pi])" "\[Rho](\[Eta]\[Eta])" Abs[T(\[Pi]\[Pi] -> \[Eta]\[Eta])] Abs[T(\[Pi]\[Pi] -> \[Eta]\[Eta])]}]; +Export["f0PiPitoEtaEtaArgandUnits.pdf", f0PiPitoEtaEtaTsqr]; + +f0PiPitoEtaEtaprimeTsqr=Plot[ { rho[m*m,mpi,mpi] rho[m*m,meta,metaprime] Norm[Tmat[m*m + I 0.0000001][[1,5]]] Norm[Tmat[m*m + I 0.0000001][[1,5]]] }, {m, meta+metaprime, 1.9}, AxesLabel->{M [GeV/(c c)], "\[Rho](\[Pi]\[Pi])" "\[Rho](\[Eta]\[Eta]')" Abs[T(\[Pi]\[Pi] -> \[Eta]\[Eta]')] Abs[T(\[Pi]\[Pi] -> \[Eta]\[Eta]')]}]; +Export["f0PiPitoEtaEtaprimeArgandUnits.pdf", f0PiPitoEtaEtaprimeTsqr]; +