Something went wrong on our end
-
Bertram Kopf authoredc0b96380
EvtVector4R.cc 4.86 KiB
//--------------------------------------------------------------------------
//
// Environment:
// This software is part of the EvtGen package developed jointly
// for the BaBar and CLEO collaborations. If you use all or part
// of it, please give an appropriate acknowledgement.
//
// Copyright Information: See EvtGen/COPYRIGHT
// Copyright (C) 1998 Caltech, UCSB
//
// Module: EvtVector4R.cc
//
// Description: Real implementation of 4-vectors
//
// Modification history:
//
// DJL/RYD September 25, 1996 Module created
//
//------------------------------------------------------------------------
//
#include <iostream>
#include <math.h>
#include <assert.h>
#include "PspGen/EvtVector4R.hh"
#include "PspGen/EvtVector3R.hh"
#include "PspGen/EvtVector4C.hh"
#include "PspGen/EvtTensor4C.hh"
EvtVector4R::EvtVector4R(double e,double p1,double p2, double p3){
v[0]=e; v[1]=p1; v[2]=p2; v[3]=p3;
}
double EvtVector4R::mass() const{
double m2=v[0]*v[0]-v[1]*v[1]-v[2]*v[2]-v[3]*v[3];
if (m2>0.0) {
return sqrt(m2);
}
else{
return 0.0;
}
}
EvtVector4R rotateEuler(const EvtVector4R& rs,
double alpha,double beta,double gamma){
EvtVector4R tmp(rs);
tmp.applyRotateEuler(alpha,beta,gamma);
return tmp;
}
EvtVector4R boostTo(const EvtVector4R& rs,
const EvtVector4R& p4){
EvtVector4R tmp(rs);
tmp.applyBoostTo(p4);
return tmp;
}
EvtVector4R boostTo(const EvtVector4R& rs,
const EvtVector3R& boost){
EvtVector4R tmp(rs);
tmp.applyBoostTo(boost);
return tmp;
}
void EvtVector4R::applyRotateEuler(double phi,double theta,double ksi){
double sp=sin(phi);
double st=sin(theta);
double sk=sin(ksi);
double cp=cos(phi);
double ct=cos(theta);
double ck=cos(ksi);
double x=( ck*ct*cp-sk*sp)*v[1]+( -sk*ct*cp-ck*sp)*v[2]+st*cp*v[3];
double y=( ck*ct*sp+sk*cp)*v[1]+(-sk*ct*sp+ck*cp)*v[2]+st*sp*v[3];
double z=-ck*st*v[1]+sk*st*v[2]+ct*v[3];
v[1]=x;
v[2]=y;
v[3]=z;
}
std::ostream& operator<<(std::ostream& s, const EvtVector4R& v){
s<<"("<<v.v[0]<<","<<v.v[1]<<","<<v.v[2]<<","<<v.v[3]<<")";
return s;
}
void EvtVector4R::applyBoostTo(const EvtVector4R& p4){
double e=p4.get(0);
EvtVector3R boost(p4.get(1)/e,p4.get(2)/e,p4.get(3)/e);
applyBoostTo(boost);
return;
}
void EvtVector4R::applyBoostTo(const EvtVector3R& boost){
double bx,by,bz,gamma,b2;
bx=boost.get(0);
by=boost.get(1);
bz=boost.get(2);
double bxx=bx*bx;
double byy=by*by;
double bzz=bz*bz;
b2=bxx+byy+bzz;
if (b2==0.0){
return;
}
assert(b2<1.0);
gamma=1.0/sqrt(1-b2);
double gb2=(gamma-1.0)/b2;
double gb2xy=gb2*bx*by;
double gb2xz=gb2*bx*bz;
double gb2yz=gb2*by*bz;
double gbx=gamma*bx;
double gby=gamma*by;
double gbz=gamma*bz;
double e2=v[0];
double px2=v[1];
double py2=v[2];
double pz2=v[3];
v[0]=gamma*e2+gbx*px2+gby*py2+gbz*pz2;
v[1]=gbx*e2+gb2*bxx*px2+px2+gb2xy*py2+gb2xz*pz2;
v[2]=gby*e2+gb2*byy*py2+py2+gb2xy*px2+gb2yz*pz2;
v[3]=gbz*e2+gb2*bzz*pz2+pz2+gb2yz*py2+gb2xz*px2;
return;
}
EvtVector4R EvtVector4R::cross( const EvtVector4R& p2 ){
//Calcs the cross product. Added by djl on July 27, 1995.
//Modified for real vectros by ryd Aug 28-96
EvtVector4R temp;
temp.v[0] = 0.0;
temp.v[1] = v[2]*p2.v[3] - v[3]*p2.v[2];
temp.v[2] = v[3]*p2.v[1] - v[1]*p2.v[3];
temp.v[3] = v[1]*p2.v[2] - v[2]*p2.v[1];
return temp;
}
double EvtVector4R::d3mag() const
// returns the 3 momentum mag.
{
double temp;
temp = v[1]*v[1]+v[2]*v[2]+v[3]*v[3];
temp = sqrt( temp );
return temp;
} // r3mag
double EvtVector4R::dot ( const EvtVector4R& p2 )const{
//Returns the dot product of the 3 momentum. Added by
//djl on July 27, 1995. for real!!!
double temp;
temp = v[1]*p2.v[1];
temp += v[2]*p2.v[2];
temp += v[3]*p2.v[3];
return temp;
} //dot
// Functions below added by AJB
// // Calculate ( \vec{p1} cross \vec{p2} ) \cdot \vec{p3} in rest frame of object
// double EvtVector4R::scalartripler3( const EvtVector4R& p1,
// const EvtVector4R& p2, const EvtVector4R& p3 ) const
// {
// EvtVector4C lc=dual(directProd(*this, p1)).cont2(p2);
// EvtVector4R l(real(lc.get(0)), real(lc.get(1)), real(lc.get(2)),
// real(lc.get(3)));
// return -1.0/mass() * (l * p3);
// }
// Calculate the 3-d dot product of 4-vectors p1 and p2 in the rest frame of
// 4-vector p0
double EvtVector4R::dotr3( const EvtVector4R& p1, const EvtVector4R& p2 ) const
{
return 1/mass2() * ((*this) * p1) * ((*this) * p2) - p1 * p2;
}
// Calculate the 3-d magnitude squared of 4-vector p1 in the rest frame of
// 4-vector p0
double EvtVector4R::mag2r3( const EvtVector4R& p1 ) const
{
return Square((*this) * p1)/mass2() - p1.mass2();
}
// Calculate the 3-d magnitude 4-vector p1 in the rest frame of 4-vector p0.
double EvtVector4R::magr3( const EvtVector4R& p1 ) const
{
return sqrt(mag2r3(p1));
}