Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
//************************************************************************//
// //
// Copyright 2013 Bertram Kopf (bertram@ep1.rub.de) //
// Julian Pychy (julian@ep1.rub.de) //
// - Ruhr-Universität Bochum //
// //
// This file is part of Pawian. //
// //
// Pawian is free software: you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation, either version 3 of the License, or //
// (at your option) any later version. //
// //
// Pawian is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with Pawian. If not, see <http://www.gnu.org/licenses/>. //
// //
//************************************************************************//
// KMatrixDynamics class definition file. -*- C++ -*-
// Copyright 2013 Bertram Kopf
#include <getopt.h>
#include <fstream>
#include <string>
#include "PwaUtils/KMatrixDynamics.hh"
#include "PwaUtils/XdecAmpRegistry.hh"
#include "PwaUtils/AbsDecay.hh"
#include "PwaUtils/AbsXdecAmp.hh"
#include "PwaUtils/GlobalEnv.hh"
#include "ErrLogger/ErrLogger.hh"
#include "Particle/Particle.hh"
#include "Particle/ParticleTable.hh"
#include "PwaDynamics/FVector.hh"
#include "ConfigParser/KMatrixParser.hh"
#include "PwaDynamics/KMatrixRel.hh"
#include "PwaDynamics/KMatrixRelBg.hh"
#include "PwaDynamics/KPole.hh"
#include "PwaDynamics/KPoleBarrier.hh"
#include "PwaDynamics/PPole.hh"
#include "PwaDynamics/PPoleBarrier.hh"
#include "PwaDynamics/AbsPhaseSpace.hh"
#include "PwaDynamics/PhaseSpaceIsobar.hh"
#include "FitParams/AbsPawianParameters.hh"
KMatrixDynamics::KMatrixDynamics(std::string& name, std::vector<Particle*>& fsParticles, Particle* mother, std::string& pathToConfigParser) :
AbsDynamics(name, fsParticles, mother)
,_kMatName("")
, _orderKMatBg(-1)
,_withKMatAdler(false)
,_currentAdler0(0.)
,_kMatrixParser(new KMatrixParser(pathToConfigParser))
{
init();
Bertram Kopf
committed
_isLdependent=false;
}
KMatrixDynamics::~KMatrixDynamics()
{
}
complex<double> KMatrixDynamics::eval(EvtData* theData, AbsXdecAmp* grandmaAmp, Spin OrbMom){
complex<double> result(0.,0.);
int evtNo=theData->evtNo;
std::string currentKey="default";
if(0!=grandmaAmp) currentKey=_massKey+grandmaAmp->absDec()->massParKey();
Bertram Kopf
committed
bool readFromCachedMap=false;
theMutex.lock();
Bertram Kopf
committed
if( _cacheAmps){
if(_recalculate){
bool currentEvtAlreadyCached=false;
std::map<int, std::map<std::string, bool > >::iterator itAlreadyCached=_alreadyCached.find(evtNo);
if( itAlreadyCached != _alreadyCached.end()){
std::map<std::string, bool >::iterator itAlreadyCached2= itAlreadyCached->second.find(currentKey);
if( itAlreadyCached2 != itAlreadyCached->second.end()){
currentEvtAlreadyCached=itAlreadyCached2->second;
}
else{
_alreadyCached[evtNo][currentKey]=false;
}
}
else{
_alreadyCached[evtNo][currentKey]=false;
}
if(currentEvtAlreadyCached) readFromCachedMap=true;
}
else readFromCachedMap=true;
Bertram Kopf
committed
if ( readFromCachedMap){
result=_cachedStringMap.at(evtNo).at(currentKey);
}
result=_fVecMap[currentKey]->evalProjMatrix(theData->DoubleString.at(_dynKey), _projectionIndex);
if ( _cacheAmps){
Bertram Kopf
committed
_cachedStringMap[evtNo][currentKey]=result;
_alreadyCached.at(evtNo).at(currentKey)=true;
}
}
theMutex.unlock();
Bertram Kopf
committed
return result;
}
void KMatrixDynamics::fillDefaultParams(std::shared_ptr<AbsPawianParameters> fitPar){
//beta factor for production
std::map<std::string, std::map<std::string, double> >::iterator it1;
for(it1=_currentbFactorMap.begin(); it1!=_currentbFactorMap.end(); ++it1){
std::string theName=it1->first;
std::map<std::string, double>& bFactors = it1->second;
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::string currentName="b_"+_poleNames.at(i);
// std::cout << "currentName: " << currentName << std::endl;
std::string magName=currentName+"Mag";
fitPar->Add(theName+magName, bFactors.at(magName) , 1.);
// fitPar->SetLimits(theName+magName, 0., bFactors.at(magName)+30.);
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
std::string phiName=currentName+"Phi";
fitPar->Add(theName+phiName, bFactors.at(phiName) , 0.2);
}
}
//pole positions
std::vector<double >::iterator itPoleVec;
for(unsigned int i=0; i<_currentPoleMasses.size(); ++i){
double valMass=_currentPoleMasses.at(i);
double errMass=0.02;
double minMass=valMass-5.*errMass;
if(minMass<0.) minMass=0.;
double maxMass=valMass+5.*errMass;
fitPar->Add(_poleNames.at(i)+"Mass", valMass, errMass);
fitPar->SetLimits(_poleNames.at(i)+"Mass", minMass, maxMass);
}
//g-factors
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::vector<double> currentgFactorVec=_currentgFactorMap.at(i);
for(unsigned int j=0; j<currentgFactorVec.size(); ++j){
std::string currentName=_poleNames.at(i)+_gFactorNames.at(j)+"gFactor";
fitPar->Add(currentName, currentgFactorVec.at(j), currentgFactorVec.at(j)/3.);
}
}
//k-matrix bg-terms
if(_orderKMatBg>=0){
for(unsigned int i=0; i<=fabs(_orderKMatBg); ++i){
for(unsigned int j=0; j<_phpVecs.size(); ++j){
for(unsigned int k=j; k<_phpVecs.size(); ++k){
std::string currentName=_bgTermNames.at(i).at(j).at(k);
fitPar->Add(currentName, _currentBgTerms.at(i).at(j).at(k), fabs(_currentBgTerms.at(i).at(j).at(k))+0.3);
}
}
}
//Adler-term
if(_withKMatAdler){
fitPar->Add("s0"+_kMatName, _currentAdler0, fabs(_currentAdler0)+0.2);
}
}
}
Bertram Kopf
committed
void KMatrixDynamics::fillParamNameList(){
_paramNameList.clear();
Bertram Kopf
committed
Bertram Kopf
committed
//beta factor for production
std::map<std::string, std::map<std::string, double> >::iterator it1;
for(it1=_currentbFactorMap.begin(); it1!=_currentbFactorMap.end(); ++it1){
Bertram Kopf
committed
std::string theName=it1->first;
std::map<std::string, double>& bFactors = it1->second;
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::string currentName="b_"+_poleNames.at(i);
// std::cout << "currentName: " << currentName << std::endl;
std::string magName=currentName+"Mag";
_paramNameList.push_back(theName+magName);
std::string phiName=currentName+"Phi";
_paramNameList.push_back(theName+phiName);
}
}
Bertram Kopf
committed
//pole positions
std::vector<double >::iterator itPoleVec;
for(unsigned int i=0; i<_currentPoleMasses.size(); ++i){
Bertram Kopf
committed
_paramNameList.push_back(_poleNames.at(i)+"Mass");
Bertram Kopf
committed
//g-factors
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::vector<double> currentgFactorVec=_currentgFactorMap.at(i);
for(unsigned int j=0; j<currentgFactorVec.size(); ++j){
std::string currentName=_poleNames.at(i)+_gFactorNames.at(j)+"gFactor";
Bertram Kopf
committed
_paramNameList.push_back(currentName);
}
}
Bertram Kopf
committed
//k-matrix bg-terms
if(_orderKMatBg>=0){
for(unsigned int i=0; i<=fabs(_orderKMatBg); ++i){
for(unsigned int j=0; j<_phpVecs.size(); ++j){
Bertram Kopf
committed
for(unsigned int k=j; k<_phpVecs.size(); ++k){
std::string currentName=_bgTermNames.at(i).at(j).at(k);
_paramNameList.push_back(currentName);
}
}
}
//Adler-term
if(_withKMatAdler){
Bertram Kopf
committed
_paramNameList.push_back("s0"+_kMatName);
Bertram Kopf
committed
void KMatrixDynamics::updateFitParams(std::shared_ptr<AbsPawianParameters> fitPar){
//beta factor for production
std::map<std::string, std::map<std::string, double> >::iterator it1;
for(it1=_currentbFactorMap.begin(); it1!=_currentbFactorMap.end(); ++it1){
Bertram Kopf
committed
std::string theName=it1->first;
std::map<std::string, double>::iterator it2;
std::map<std::string, double>& bFactors=it1->second;
for(it2=bFactors.begin(); it2!=bFactors.end(); ++it2){
Bertram Kopf
committed
it2->second=fitPar->Value(it1->first+it2->first);
Bertram Kopf
committed
std::shared_ptr<PVectorRel> currentPVec=_pVecMap.at(it1->first);
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::string currentName="b_"+_poleNames.at(i);
complex<double> currentbFactor=fabs(bFactors.at(currentName+"Mag"))*complex<double>(cos(bFactors.at(currentName+"Phi")), sin(bFactors.at(currentName+"Phi")));
currentPVec->updateBeta(i, currentbFactor);
}
}
//pole positions
std::vector<double >::iterator itPoleVec;
for(unsigned int i=0; i<_currentPoleMasses.size(); ++i){
Bertram Kopf
committed
std::string currentPoleName=_poleNames.at(i)+"Mass";
double currentPoleMass=fitPar->Value(currentPoleName);
_currentPoleMasses.at(i)=currentPoleMass;
_kPoles.at(i)->updatePoleMass(currentPoleMass);
std::map<std::string, std::shared_ptr<PVectorRel> >::iterator itPVec;
for(itPVec=_pVecMap.begin(); itPVec!=_pVecMap.end(); ++itPVec){
itPVec->second->updatePoleMass(i, currentPoleMass);
}
}
//g-factors
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::vector<double>& currentgFactorVec=_currentgFactorMap.at(i);
for(unsigned int j=0; j<currentgFactorVec.size(); ++j){
std::string currentName=_poleNames.at(i)+_gFactorNames.at(j)+"gFactor";
Bertram Kopf
committed
currentgFactorVec.at(j)=fitPar->Value(currentName);
}
_kPoles.at(i)->updategFactors(currentgFactorVec);
std::map<std::string, std::shared_ptr<PVectorRel> >::iterator itPVec;
for(itPVec=_pVecMap.begin(); itPVec!=_pVecMap.end(); ++itPVec){
itPVec->second->updategFactors(i, currentgFactorVec);
}
}
//k-matrix bg-terms
if(_orderKMatBg>=0){
for(unsigned int i=0; i<=fabs(_orderKMatBg); ++i){
for(unsigned int j=0; j<_phpVecs.size(); ++j){
for(unsigned int k=j; k<_phpVecs.size(); ++k){
Bertram Kopf
committed
std::string currentName=_bgTermNames.at(i).at(j).at(k);
double newVal=fitPar->Value(_bgTermNames.at(i).at(j).at(k));
_currentBgTerms.at(i).at(j).at(k)=newVal;
_kMatr->updateBgTerms(i,j,k,newVal);
}
}
}
//Adler-term
if(_withKMatAdler){
Bertram Kopf
committed
_currentAdler0=fitPar->Value("s0"+_kMatName);
_kMatr->updates0Adler(_currentAdler0);
}
}
Bertram Kopf
committed
Bertram Kopf
committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// void KMatrixDynamics::updateFitParams(fitParCol& theParamVal){
// //beta factor for production
// std::map<std::string, std::map<std::string, double> >::iterator it1;
// for(it1=_currentbFactorMap.begin(); it1!=_currentbFactorMap.end(); ++it1){
// std::map<std::string, double>::iterator it2;
// std::map<std::string, double>& bFactors=it1->second;
// for(it2=bFactors.begin(); it2!=bFactors.end(); ++it2){
// it2->second=theParamVal.otherParams.at(it1->first+it2->first);
// }
// std::shared_ptr<PVectorRel> currentPVec=_pVecMap.at(it1->first);
// for(unsigned int i=0; i<_poleNames.size(); ++i){
// std::string currentName="b_"+_poleNames.at(i);
// complex<double> currentbFactor=bFactors.at(currentName+"Mag")*complex<double>(cos(bFactors.at(currentName+"Phi")), sin(bFactors.at(currentName+"Phi")));
// currentPVec->updateBeta(i, currentbFactor);
// }
// }
// //pole positions
// std::vector<double >::iterator itPoleVec;
// for(unsigned int i=0; i<_currentPoleMasses.size(); ++i){
// double currentPoleMass=theParamVal.Masses[_poleNames.at(i)];
// _currentPoleMasses.at(i)=currentPoleMass;
// _kPoles.at(i)->updatePoleMass(currentPoleMass);
// std::map<std::string, std::shared_ptr<PVectorRel> >::iterator itPVec;
// for(itPVec=_pVecMap.begin(); itPVec!=_pVecMap.end(); ++itPVec){
// itPVec->second->updatePoleMass(i, currentPoleMass);
// }
// }
// //g-factors
// for(unsigned int i=0; i<_poleNames.size(); ++i){
// std::vector<double>& currentgFactorVec=_currentgFactorMap.at(i);
// for(unsigned int j=0; j<currentgFactorVec.size(); ++j){
// std::string currentName=_poleNames.at(i)+_gFactorNames.at(j)+"gFactor";
// currentgFactorVec.at(j)=theParamVal.gFactors.at(currentName);
// }
// _kPoles.at(i)->updategFactors(currentgFactorVec);
// std::map<std::string, std::shared_ptr<PVectorRel> >::iterator itPVec;
// for(itPVec=_pVecMap.begin(); itPVec!=_pVecMap.end(); ++itPVec){
// itPVec->second->updategFactors(i, currentgFactorVec);
// }
// }
// //k-matrix bg-terms
// if(_orderKMatBg>=0){
// for(unsigned int i=0; i<=fabs(_orderKMatBg); ++i){
// for(unsigned int j=0; j<_phpVecs.size(); ++j){
// for(unsigned int k=j; k<_phpVecs.size(); ++k){
// double newVal=theParamVal.otherParams.at(_bgTermNames.at(i).at(j).at(k));
// _currentBgTerms.at(i).at(j).at(k)=newVal;
// _kMatr->updateBgTerms(i,j,k,newVal);
// }
// }
// }
// //Adler-term
// if(_withKMatAdler){
// _currentAdler0=theParamVal.otherParams.at("s0"+_kMatName);
// _kMatr->updates0Adler(_currentAdler0);
// }
// }
// }
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
void KMatrixDynamics::addGrandMa(std::shared_ptr<AbsDecay> theDec){
if(0==theDec){
Alert << "Can not add AbsXdecAmp; 0 pointer!!!" << endmsg;
exit(1);
}
std::string theName=_massKey+theDec->massParKey();
std::cout << "addGrandMa:\t" << theName << std::endl;
std::map<std::string, std::shared_ptr<FVector> >::iterator it = _fVecMap.find(theName);
if (it != _fVecMap.end()) return;
std::shared_ptr<PVectorRel> currentPVector=makeNewPVec();
_pVecMap[theName]=currentPVector;
std::vector< std::string>::iterator poleNameIt;
for (poleNameIt=_poleNames.begin(); poleNameIt!=_poleNames.end(); ++poleNameIt){
std::string currentName="b_"+(*poleNameIt);
_currentbFactorMap[theName][currentName+"Mag"]=1.;
_currentbFactorMap[theName][currentName+"Phi"]=0.;
}
std::map<std::string, double>& bFactors = _currentbFactorMap[theName];
for(unsigned int i=0; i<_poleNames.size(); ++i){
std::string currentName="b_"+_poleNames[i];
std::cout << "currentName: " << currentName << std::endl;
complex<double> currentbFactor=bFactors[currentName+"Mag"]*complex<double>(cos(bFactors[currentName+"Phi"]), sin(bFactors[currentName+"Phi"]));
currentPVector->updateBeta(i, currentbFactor);
}
std::shared_ptr<FVector> currentFVector=std::shared_ptr<FVector>(new FVector(_kMatr, currentPVector));
_fVecMap[theName]=currentFVector;
_recalcMap[theName]=true;
}
const std::string& KMatrixDynamics::grandMaKey(AbsXdecAmp* grandmaAmp){
if(0==grandmaAmp) return _grandmaKey;
return grandmaAmp->absDec()->massParKey();
}
void KMatrixDynamics::init(){
_kMatName=_kMatrixParser->keyName();
_orderKMatBg=_kMatrixParser->orderBg();
_withKMatAdler=_kMatrixParser->useAdler();
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
std::vector<std::string> poleNameAndMassVecs=_kMatrixParser->poles();
std::vector<std::string>::iterator itString;
for (itString=poleNameAndMassVecs.begin(); itString!=poleNameAndMassVecs.end(); ++itString){
std::istringstream poleIString(*itString);
std::string currentPoleName;
std::string currentPoleMassStr;
poleIString >> currentPoleName >> currentPoleMassStr;
std::istringstream currentPoleMassiStr(currentPoleMassStr);
double currentValue;
if(!(currentPoleMassiStr >> currentValue)){
Alert << "cannot convert " << currentPoleMassStr << " to a double value" << endmsg;
exit(0);
}
_currentPoleMasses.push_back(currentValue);
_poleNames.push_back(currentPoleName);
}
if(_currentPoleMasses.size()!= _kMatrixParser->noOfPoles()){
Alert << "number of poles != number of pole masses" << endmsg;
exit(0);
}
const std::vector<std::string> gFacStringVec=_kMatrixParser->gFactors();
std::vector<std::string>::const_iterator itStrConst;
for(itStrConst=gFacStringVec.begin(); itStrConst!=gFacStringVec.end(); ++itStrConst){
std::istringstream particles(*itStrConst);
std::string firstParticleName;
std::string secondParticleName;
particles >> firstParticleName >> secondParticleName;
Particle* firstParticle = GlobalEnv::instance()->particleTable()->particle(firstParticleName);
Particle* secondParticle = GlobalEnv::instance()->particleTable()->particle(secondParticleName);
if(0==firstParticle || 0==secondParticle){
Alert << "particle with name: " << firstParticleName <<" or " << secondParticleName << " doesn't exist in pdg-table" << endmsg;
exit(0);
}
std::shared_ptr<AbsPhaseSpace> currentPhp(new PhaseSpaceIsobar(firstParticle->mass(), secondParticle->mass()));
_phpVecs.push_back(currentPhp);
std::string gFactorKey=firstParticleName+secondParticleName;
_gFactorNames.push_back(gFactorKey);
for (int i=0; i<int(_kMatrixParser->noOfPoles()); ++i){
std::string currentPoleName=_poleNames[i];
std::string currentgValueStr;
if(!(particles >> currentgValueStr)){
Alert << "g-factors for pole " << currentPoleName << " does not exist!" << endmsg;
exit(0);
}
std::istringstream currentgValueiStr(currentgValueStr);
double currentGValue;
if (!(currentgValueiStr >> currentGValue)){
Alert << "cannot convert " << currentgValueStr << " to a double value" << endmsg;
exit(0);
}
std::string gFactorKey=firstParticleName+secondParticleName;
_currentgFactorMap[i].push_back(currentGValue);
}
}
std::map<int, std::vector<double> >::iterator itgFac;
for (itgFac=_currentgFactorMap.begin(); itgFac!=_currentgFactorMap.end(); ++itgFac){
std::vector<double> currentgVector=itgFac->second;
std::shared_ptr<KPole> currentPole;
if (_kMatrixParser->useBarrierFactors()) currentPole=std::shared_ptr<KPole>(new KPoleBarrier(currentgVector, _currentPoleMasses.at(itgFac->first), _phpVecs, _kMatrixParser->orbitalMom(), _kMatrixParser->useTruncatedBarrierFactors()));
else currentPole=std::shared_ptr<KPole>(new KPole(currentgVector, _currentPoleMasses.at(itgFac->first)));
_kPoles.push_back(currentPole);
}
if(_orderKMatBg<0) _kMatr=std::shared_ptr<KMatrixRel>(new KMatrixRel(_kPoles,_phpVecs ));
else {
_currentBgTerms.resize(_orderKMatBg+1);
_bgTermNames.resize(_orderKMatBg+1);
for(unsigned int i=0; i<= fabs(_orderKMatBg); ++i){
_currentBgTerms.at(i).resize(_phpVecs.size());
_bgTermNames.at(i).resize(_phpVecs.size());
for(unsigned int j=0; j<_phpVecs.size(); ++j){
_currentBgTerms.at(i).at(j).resize(_phpVecs.size());
_bgTermNames.at(i).at(j).resize(_phpVecs.size());
for(unsigned int k=j; k<_phpVecs.size(); ++k){
_currentBgTerms.at(i).at(j).at(k)=0.;
std::stringstream keyOrderStrStr;
keyOrderStrStr << i << j << k;
std::string keyOrder=keyOrderStrStr.str();
std::string currentName="bg"+keyOrder+_kMatName+"PosNeg";
_bgTermNames.at(i).at(j).at(k)=currentName;
}
}
}
_kMatr=std::shared_ptr<KMatrixRel>(new KMatrixRelBg(_kPoles,_phpVecs, _orderKMatBg, _withKMatAdler ));
if(_withKMatAdler){
_currentAdler0=_kMatrixParser->s0Adler();
_kMatr->updates0Adler(_currentAdler0);
_kMatr->updatesnormAdler(_kMatrixParser->snormAdler());
}
}
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
const std::string porjectionParticleNames=_kMatrixParser->projection();
std::istringstream projParticles(porjectionParticleNames);
std::string firstProjParticleName;
std::string secondProjParticleName;
projParticles >> firstProjParticleName >> secondProjParticleName;
std::string projKey=firstProjParticleName+secondProjParticleName;
bool found=false;
for(unsigned int i=0; i<_gFactorNames.size();++i){
if(projKey==_gFactorNames[i]){
_projectionIndex=i;
found=true;
}
}
if (!found){
Alert << "projection index for key " << projKey << " not found" << endmsg;
exit(0);
}
}
std::shared_ptr<PVectorRel> KMatrixDynamics::makeNewPVec(){
vector<std::shared_ptr<PPole> > thePpoles;
complex<double> defaultBeta(1.,0.);
vector<std::shared_ptr<KPole> >::iterator it;
for (it=_kPoles.begin(); it!=_kPoles.end(); ++it){
std::vector<double> currentGFactors=(*it)->gFactors();
std::shared_ptr<PPole> currentPPole;
if (_kMatrixParser->useBarrierFactors()) currentPPole=std::shared_ptr<PPole>(new PPoleBarrier(defaultBeta, currentGFactors, (*it)->poleMass(), _phpVecs, _kMatrixParser->orbitalMom()));
else currentPPole=std::shared_ptr<PPole>(new PPole(defaultBeta, currentGFactors, (*it)->poleMass()));
thePpoles.push_back(currentPPole);
}
std::shared_ptr<PVectorRel> thePVector(new PVectorRel(thePpoles, _phpVecs));
return thePVector;
}