Newer
Older
#include <getopt.h>
#include <fstream>
#include <string>
#include "Examples/pbarpToOmegaPi/OmegaPiLhGamma.hh"
#include "Examples/pbarpToOmegaPi/OmegaPiEventList.hh"
#include "PwaUtils/pbarpStates.hh"
#include "Examples/pbarpToOmegaPi/pbarpToOmegaPi0States.hh"
#include <geneva/GConstrainedDoubleObject.hpp>
// #include <geneva/GConstrainedDoubleObjectCollection.hpp>
// #include <geneva/GDoubleGaussAdaptor.hpp>
// #include <geneva/GObjectExpectationChecksT.hpp>
OmegaPiLhGamma::OmegaPiLhGamma(boost::shared_ptr<const OmegaPiEventList> theEvtList, boost::shared_ptr<const pbarpToOmegaPi0States> theStates) :
AbsOmegaPiLh(theEvtList, theStates)
OmegaPiLhGamma::OmegaPiLhGamma(boost::shared_ptr<OmegaPiLhGamma> theOmegaPiLhGammaPtr):
AbsOmegaPiLh(theOmegaPiLhGammaPtr)
OmegaPiLhGamma::~OmegaPiLhGamma()
double OmegaPiLhGamma::calcLogLh(const OmegaPiData::fitParamVal& theParamVal){
double result=AbsOmegaPiLh::calcLogLh(theParamVal);
if (_globalItCounter%100 == 0) printFitParams(std::cout, theParamVal);
// if (_globalItCounter%1000 == 0){
// std::ofstream theStream ("currentResult.dat");
// dumpCurrentResult(theStream, theParamVal);
// theStream.close();
// }
return result;
}
double OmegaPiLhGamma::calcEvtIntensity(OmegaPiData::OmPiEvtData* theData, const OmegaPiData::fitParamVal& theParamVal){
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmSinglet=theParamVal.omegaProdSinglet;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet0=theParamVal.omegaProdTriplet0;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet1=theParamVal.omegaProdTriplet1;
Spin lamgamma=-1;
complex<double> singletAmpGM1=calcCoherentAmp(lamgamma,0, fitParmSinglet, theData);
complex<double> triplet0AmpGM1=calcCoherentAmp(lamgamma,0, fitParmTriplet0, theData);
complex<double> tripletP1AmpGM1=calcCoherentAmp(lamgamma,1, fitParmTriplet1, theData);
complex<double> tripletM1AmpGM1=calcCoherentAmp(lamgamma,-1, fitParmTriplet1, theData);
lamgamma=1;
complex<double> singletAmpGP1=calcCoherentAmp(lamgamma,0, fitParmSinglet, theData);
complex<double> triplet0AmpGP1=calcCoherentAmp(lamgamma,0, fitParmTriplet0, theData);
complex<double> tripletP1AmpGP1=calcCoherentAmp(lamgamma,1, fitParmTriplet1, theData);
complex<double> tripletM1AmpGP1=calcCoherentAmp(lamgamma,-1, fitParmTriplet1, theData);
double result=norm(singletAmpGM1)+norm(triplet0AmpGM1)+norm(tripletP1AmpGM1)+norm(tripletM1AmpGM1);
result+=norm(singletAmpGP1)+norm(triplet0AmpGP1)+norm(tripletP1AmpGP1)+norm(tripletM1AmpGP1);
return result;
}
complex<double> OmegaPiLhGamma::calcCoherentAmp(Spin lamgamma, Spin Minit, std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >& fitParm, OmegaPiData::OmPiEvtData* theData){
complex<double> result(0.,0.);
for (Spin lamomega=-1; lamomega<=1; lamomega++){
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >::iterator it;
for ( it=fitParm.begin(); it!=fitParm.end(); ++it){
boost::shared_ptr<const JPCLS> theJPCLS=it->first;
pair<double, double> fitPair=it->second;
if (fabs(lamomega)>theJPCLS->J) continue;
complex<double> omegaDecAmp=Clebsch(1,0,1,lamgamma,1, lamgamma)*conj(theData->Dfd[1][lamomega][lamgamma]);// Clebsch(1,lamgamma,0,0,1, lamgamma)=1
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
complex<double> omegaProdAmp=calcOmegaProdPartAmp(Minit, lamomega, theJPCLS, fitPair, theData);
result += omegaProdAmp*omegaDecAmp;
}
}
return result;
}
complex<double> OmegaPiLhGamma::calcOmegaProdPartAmp(Spin Minit, Spin lamomega, boost::shared_ptr<const JPCLS> theJPCLS, pair<double, double> fitVal, OmegaPiData::OmPiEvtData* theData){
complex<double> result(0.,0.);
if (fabs(lamomega)>theJPCLS->J) return result;
double theMag=fitVal.first;
double thePhi=fitVal.second;
complex<double> expiphi(cos(thePhi), sin(thePhi));
result=sqrt(2*theJPCLS->L+1)*sqrt(3)*theMag*expiphi*Clebsch(theJPCLS->L,0,1, lamomega,theJPCLS->J, lamomega)*conj(theData->Dfp[theJPCLS->J][Minit][lamomega]); //Clebsch(1,lamomega,0,0,1,lamomega)=1
if (Minit==-1 && theJPCLS->P==-1 && theJPCLS->C==-1){
int theJ=theJPCLS->J;
if( theJ!=0 && (theJ%2==0 ) ){ //J=even => negativ sign, due to CGs of the pbar p production
result=-result;
}
}
return result;
}
complex<double> OmegaPiLhGamma::calcOmegaProdAmp(Spin Minit, Spin lamomega, std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >& fitParm, OmegaPiData::OmPiEvtData* theData){
complex<double> result(0.,0.);
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >::iterator it;
for ( it=fitParm.begin(); it!=fitParm.end(); ++it){
boost::shared_ptr<const JPCLS> theJPCLS=it->first;
pair<double, double> fitPair=it->second;
result+=calcOmegaProdPartAmp(Minit, lamomega, theJPCLS, fitPair, theData);
}
return result;
}
complex<double> OmegaPiLhGamma::spinDensity(Spin M, Spin M_, OmegaPiData::OmPiEvtData* theData, const OmegaPiData::fitParamVal& theParamVal){
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmSinglet=theParamVal.omegaProdSinglet;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet0=theParamVal.omegaProdTriplet0;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet1=theParamVal.omegaProdTriplet1;
complex<double> MsingletAmpGM1=calcOmegaProdAmp(0, M, fitParmSinglet, theData);
complex<double> Mtriplet0AmpGM1=calcOmegaProdAmp(0, M, fitParmTriplet0, theData);
complex<double> MtripletP1AmpGM1=calcOmegaProdAmp(1, M, fitParmTriplet1, theData);
complex<double> MtripletM1AmpGM1=calcOmegaProdAmp(-1, M, fitParmTriplet1, theData);
complex<double> M_singletAmpGM1=calcOmegaProdAmp(0, M_, fitParmSinglet, theData);
complex<double> M_triplet0AmpGM1=calcOmegaProdAmp(0, M_, fitParmTriplet0, theData);
complex<double> M_tripletP1AmpGM1=calcOmegaProdAmp(1, M_, fitParmTriplet1, theData);
complex<double> M_tripletM1AmpGM1=calcOmegaProdAmp(-1, M_, fitParmTriplet1, theData);
complex<double> result(0.,0.);
result=MsingletAmpGM1*conj(M_singletAmpGM1)
+Mtriplet0AmpGM1*conj(M_triplet0AmpGM1)
+MtripletP1AmpGM1*conj(M_tripletP1AmpGM1)
+MtripletM1AmpGM1*conj(M_tripletM1AmpGM1);
double theNorm = norm(MsingletAmpGM1)+norm(Mtriplet0AmpGM1)+norm(MtripletP1AmpGM1)+norm(MtripletM1AmpGM1);
for (Spin M1=-1; M1<=1; M1++)
{
if(M1!=M)
{
MsingletAmpGM1=calcOmegaProdAmp(0,M1, fitParmSinglet, theData);
Mtriplet0AmpGM1=calcOmegaProdAmp(0,M1, fitParmTriplet0, theData);
MtripletP1AmpGM1=calcOmegaProdAmp(1,M1, fitParmTriplet1, theData);
MtripletM1AmpGM1=calcOmegaProdAmp(-1,M1, fitParmTriplet1, theData);
theNorm += (norm(MsingletAmpGM1)+norm(Mtriplet0AmpGM1)+norm(MtripletP1AmpGM1)+norm(MtripletM1AmpGM1));
}
}
return (result/theNorm);
}
complex<double> OmegaPiLhGamma::spinDensityOmegaFrame(Spin M, Spin M_, OmegaPiData::OmPiEvtData* theData, const OmegaPiData::fitParamVal& theParamVal){
double thetaOmegaCms=theData->omegaHeliCm4Vec.Theta();
complex<double> result(0.,0.);
for (Spin i=-1; i<=1; i++){
for (Spin j=-1; j<=1; j++){
complex<double> rhoAdair=spinDensity(i, j, theData, theParamVal);
result+=Wigner_d(1,M,i,-thetaOmegaCms)*rhoAdair*Wigner_d(1,j,M_,thetaOmegaCms);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
void OmegaPiLhGamma::getFitParamVal(OmegaPiData::fitParamVal& theParamVal, const std::vector<double>& par) const{
std::vector< boost::shared_ptr<const JPCLS> >::const_iterator itJPCLS;
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaSinglet = _omegaPi0StatesPtr->jpclsSinglet();
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet0 = _omegaPi0StatesPtr->jpclsTriplet0();
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet1 = _omegaPi0StatesPtr->jpclsTriplet1();
if (par.size()< JPCLSOmegaSinglet.size()*2+JPCLSOmegaTriplet0.size()*2+JPCLSOmegaTriplet1.size()*2-3) {
Alert << "size of parameters wrong!!! par.size()=" << par.size() <<
"\tJPCLSOmegaSinglet.size()+JPCLSOmegaTriplet0.size()+JPCLSOmegaTriplet1.size()-3=" <<
JPCLSOmegaSinglet.size()*2+JPCLSOmegaTriplet0.size()*2+JPCLSOmegaTriplet1.size()*2-3 << endmsg;
exit(1);
}
unsigned int counter=0;
for ( itJPCLS=JPCLSOmegaSinglet.begin(); itJPCLS!=JPCLSOmegaSinglet.end(); ++itJPCLS){
//now fill the fitParameterMap
double mag=par[counter];
counter++;
double phi=0.;
if (counter>1){ phi=par[counter];
counter++;
}
std::pair <double,double> tmpParameter=make_pair(mag,phi);
theParamVal.omegaProdSinglet[(*itJPCLS)]=tmpParameter;
}
for ( itJPCLS=JPCLSOmegaTriplet0.begin(); itJPCLS!=JPCLSOmegaTriplet0.end(); ++itJPCLS){
//now fill the fitParameterMap
double mag=par[counter];
counter++;
double phi=0.;
if (counter>JPCLSOmegaSinglet.size()*2){ phi=par[counter];
counter++;
}
std::pair <double,double> tmpParameter=make_pair(mag,phi);
theParamVal.omegaProdTriplet0[(*itJPCLS)]=tmpParameter;
}
for ( itJPCLS=JPCLSOmegaTriplet1.begin(); itJPCLS!=JPCLSOmegaTriplet1.end(); ++itJPCLS){
//now fill the fitParameterMap
double mag=par[counter];
counter++;
double phi=0.;
if (counter>JPCLSOmegaSinglet.size()*2+JPCLSOmegaTriplet0.size()*2-1){ phi=par[counter];
counter++;
}
std::pair <double,double> tmpParameter=make_pair(mag,phi);
theParamVal.omegaProdTriplet1[(*itJPCLS)]=tmpParameter;
}
}
void OmegaPiLhGamma::setGenevaFitParamVal( boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObjectCollection> theGbdc_ptr ){
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaSinglet= _omegaPi0StatesPtr->jpclsSinglet();
std::vector< boost::shared_ptr<const JPCLS> >::const_iterator itJPCLS;
int counter=0;
for ( itJPCLS=JPCLSOmegaSinglet.begin(); itJPCLS!=JPCLSOmegaSinglet.end(); ++itJPCLS){
//now fill the fitParameterMap
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(0., 1.) ); //JPCLS magnitude
theGbdc_ptr->push_back(gbd_ptr);
if (counter>0){
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(-M_PI, M_PI) ); //JPCLS phi
theGbdc_ptr->push_back(gbd_ptr);
}
counter++;
}
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet0= _omegaPi0StatesPtr->jpclsTriplet0();
counter=0;
for ( itJPCLS=JPCLSOmegaTriplet0.begin(); itJPCLS!=JPCLSOmegaTriplet0.end(); ++itJPCLS){
//now fill the fitParameterMap
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(0., 1.) ); //JPCLS magnitude
theGbdc_ptr->push_back(gbd_ptr);
if (counter>0){
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(-M_PI, M_PI) ); //JPCLS phi
theGbdc_ptr->push_back(gbd_ptr);
}
counter++;
}
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet1= _omegaPi0StatesPtr->jpclsTriplet1();
counter=0;
for ( itJPCLS=JPCLSOmegaTriplet1.begin(); itJPCLS!=JPCLSOmegaTriplet1.end(); ++itJPCLS){
//now fill the fitParameterMap
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(0., 1.) ); //JPCLS magnitude
theGbdc_ptr->push_back(gbd_ptr);
if (counter>0){
boost::shared_ptr<Gem::Geneva::GConstrainedDoubleObject> gbd_ptr(new Gem::Geneva::GConstrainedDoubleObject(-M_PI, M_PI) ); //JPCLS phi
theGbdc_ptr->push_back(gbd_ptr);
}
counter++;
}
}
void OmegaPiLhGamma::setMnUsrParams(MnUserParameters& upar){
std::vector< boost::shared_ptr<const JPCLS> >::const_iterator itJPCLS;
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaSinglet=_omegaPi0StatesPtr->jpclsSinglet();
int counter=0;
for ( itJPCLS=JPCLSOmegaSinglet.begin(); itJPCLS!=JPCLSOmegaSinglet.end(); ++itJPCLS){
//now fill the fitParameterMap
std::string magStr=(*itJPCLS)->name()+"S"+"mag";
std::string phiStr=(*itJPCLS)->name()+"S"+"phi";
upar.Add(magStr, 0.5, .1, 0., 2.);
if (counter>0) upar.Add(phiStr, 0., .1, -3.*M_PI, 3.*M_PI);
counter++;
}
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet0=_omegaPi0StatesPtr->jpclsTriplet0();
counter=0;
for ( itJPCLS=JPCLSOmegaTriplet0.begin(); itJPCLS!=JPCLSOmegaTriplet0.end(); ++itJPCLS){
//now fill the fitParameterMap
std::string magStr=(*itJPCLS)->name()+"T0"+"mag";
std::string phiStr=(*itJPCLS)->name()+"T0"+"phi";
upar.Add(magStr, 0.5, .1, 0., 2.);
if (counter>0) upar.Add(phiStr, 0., .1, -3.*M_PI, 3.*M_PI);
counter++;
}
std::vector< boost::shared_ptr<const JPCLS> > JPCLSOmegaTriplet1=_omegaPi0StatesPtr->jpclsTriplet1();
counter=0;
for ( itJPCLS=JPCLSOmegaTriplet1.begin(); itJPCLS!=JPCLSOmegaTriplet1.end(); ++itJPCLS){
//now fill the fitParameterMap
std::string magStr=(*itJPCLS)->name()+"T1"+"mag";
std::string phiStr=(*itJPCLS)->name()+"T1"+"phi";
upar.Add(magStr, 0.5, .1, 0., 2.);
if (counter>0) upar.Add(phiStr, 0., .1, -3.*M_PI, 3.*M_PI);
counter++;
}
}
void OmegaPiLhGamma::setMnUsrParams(MnUserParameters& upar, OmegaPiData::fitParamVal &finalFitParm){
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmSinglet=finalFitParm.omegaProdSinglet;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet0=finalFitParm.omegaProdTriplet0;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet1=finalFitParm.omegaProdTriplet1;
FillUpars(upar,fitParmSinglet,"S");
FillUpars(upar,fitParmTriplet0,"T0");
FillUpars(upar,fitParmTriplet1,"T1");
}
void OmegaPiLhGamma::FillUpars(MnUserParameters& upar,
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >& fitParmS,
const string &theSuffix)
{
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >::iterator it;
bool bFirst=true;
for ( it=fitParmS.begin(); it!=fitParmS.end(); ++it)
{
boost::shared_ptr<const JPCLS> theJPCLS=it->first;
string strName = theJPCLS->name()+theSuffix;
double theMag=it->second.first;
double thePhi=it->second.second;
//now fill the fitParameterMap
std::string magStr=strName+"mag";
std::string phiStr=strName+"phi";
upar.Add(magStr, theMag, .1, 0., 2.);
if (!bFirst) upar.Add(phiStr, thePhi, .1, -3.*M_PI, 3.*M_PI);
if(bFirst) bFirst=false;
}
}
void OmegaPiLhGamma::setMnUsrParams(MnUserParameters& upar, minuitStartParam &theStartParam)
{
FillUpars(upar,theStartParam,_omegaPi0StatesPtr->jpclsSinglet(),"S");
FillUpars(upar,theStartParam,_omegaPi0StatesPtr->jpclsTriplet0(),"T0");
FillUpars(upar,theStartParam,_omegaPi0StatesPtr->jpclsTriplet1(),"T1");
}
//This Method fills the Minuit User Parameters with parameters for given state and if supllied initializes
//the parameter with start parameters given by user in theStartParam map.
void OmegaPiLhGamma::FillUpars(MnUserParameters& upar,
minuitStartParam &theStartParam,
const std::vector< boost::shared_ptr<const JPCLS> > &theJPCLS,
const string &theSuffix
)
{ //now fill the fitParameterMap
std::vector< boost::shared_ptr<const JPCLS> >::const_iterator itJPCLS;
bool bFirst=true;
for ( itJPCLS=theJPCLS.begin(); itJPCLS!=theJPCLS.end(); ++itJPCLS)
{
string strName = (*itJPCLS)->name()+theSuffix;
std::string magStr=strName+"mag";
std::string phiStr=strName+"phi";
ParameterMap::iterator it;
it = theStartParam.getParamMap().find(strName);
if (it != theStartParam.getParamMap().end())
{
upar.Add(magStr, it->second[0], .1, 0., 1.);
if (!bFirst) upar.Add(phiStr, it->second[1], .1, -3.*M_PI, 3.*M_PI);
DebugMsg << "\nUsing user start Parameter for the state " << strName << " with mag= " << it->second[0]
<< " and phi=" << it->second[1] << "\n";
}
else
{
upar.Add(magStr, 0.5, .1, 0., 1.);
if (!bFirst) upar.Add(phiStr, 0., .1, -3.*M_PI, 3.*M_PI);
}
if (bFirst) bFirst=false;
}
}
void OmegaPiLhGamma::dumpCurrentResult(std::ostream& os, const OmegaPiData::fitParamVal& fitParmVal) const{
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmSinglet=fitParmVal.omegaProdSinglet;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet0=fitParmVal.omegaProdTriplet0;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet1=fitParmVal.omegaProdTriplet1;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >::const_iterator iter;
// singlet
for ( iter=fitParmSinglet.begin(); iter!=fitParmSinglet.end(); ++iter){
boost::shared_ptr<const JPCLS> theJPCLS=iter->first;
double theMag=iter->second.first;
double thePhi=iter->second.second;
std::string strName = theJPCLS->name()+"S";
os << strName << "\t" << theMag << "\t" << thePhi << "\n";
}
// triplet0
for ( iter=fitParmTriplet0.begin(); iter!=fitParmTriplet0.end(); ++iter){
boost::shared_ptr<const JPCLS> theJPCLS=iter->first;
double theMag=iter->second.first;
double thePhi=iter->second.second;
std::string strName = theJPCLS->name()+"T0";
os << strName << "\t" << theMag << "\t" << thePhi << "\n";
}
// triplet1
for ( iter=fitParmTriplet1.begin(); iter!=fitParmTriplet1.end(); ++iter){
boost::shared_ptr<const JPCLS> theJPCLS=iter->first;
double theMag=iter->second.first;
double thePhi=iter->second.second;
std::string strName = theJPCLS->name()+"T1";
os << strName << "\t" << theMag << "\t" << thePhi << "\n";
}
}
void OmegaPiLhGamma::printFitParams(std::ostream& os, const OmegaPiData::fitParamVal& fitParmVal){
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmSinglet=fitParmVal.omegaProdSinglet;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet0=fitParmVal.omegaProdTriplet0;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess > fitParmTriplet1=fitParmVal.omegaProdTriplet1;
std::map< boost::shared_ptr<const JPCLS>, pair<double, double>, pawian::Collection::SharedPtrLess >::const_iterator iter;
os << "***fit parameter singlet states*** " << "\n";
for ( iter=fitParmSinglet.begin(); iter!=fitParmSinglet.end(); ++iter){
os << iter->first->name()<< "\t";
std::pair<double, double> tmpParam= iter->second;
os <<"\t mag:" << tmpParam.first <<"\t phi:" << tmpParam.second << "\n";
}
os << "***fit parameter triplet m=0 states*** " << "\n";
for ( iter=fitParmTriplet0.begin(); iter!=fitParmTriplet0.end(); ++iter){
os << iter->first->name()<< "\t";
std::pair<double, double> tmpParam= iter->second;
os <<"\t mag:" << tmpParam.first <<"\t phi:" << tmpParam.second << "\n";
}
os << "***fit parameter triplet m=1 states*** " << "\n";
for ( iter=fitParmTriplet1.begin(); iter!=fitParmTriplet1.end(); ++iter){
os << iter->first->name()<< "\t";
std::pair<double, double> tmpParam= iter->second;
os <<"\t mag:" << tmpParam.first <<"\t phi:" << tmpParam.second << "\n";
}
}
void OmegaPiLhGamma::print(std::ostream& os) const{
os << "OmegaPiLhGamma\n";