Skip to content
Snippets Groups Projects
Tensor.tcc 14.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
// Tensor template class source file. -*- C++ -*-
/* Copyright 2008 Mike Williams (mwill@jlab.org)
 *
 * This file is part of qft++.
 *
 * qft++ is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * qft++ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with qft++.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef _Tensor_TCC
#define _Tensor_TCC
//_____________________________________________________________________________
/** @file Tensor.tcc
 *  @brief Tensor template class source file.
 */
//_____________________________________________________________________________

template <typename _Tp> template<typename T> 
Tensor<typename MultType<_Tp,T>::Type>
Tensor<_Tp>::Contract(const Tensor<T> &__tensor,int __num_indicies) const {

  int ind1max,ind2st,sumsize,nterm,rank;
  Tensor<typename MultType<_Tp,T>::Type> ret;
  MetricTensor g;
  double gFactors;
  typename MultType<_Tp,T>::Type element;
  ind1max = 0;
  ind2st = 0;
  sumsize = 0;

  if(_rank == 0){ // if this is rank 0, just multiply __tensor by this' value
    ret.SetRank(__tensor._rank);
    ret = _data[0] * __tensor;
    return ret;
  }
  else if(__tensor._rank == 0){//__tensor is rank 0...
    ret.SetRank(_rank);
    ret = (*this) * __tensor._data[0];
    return ret;
  }

  if(__num_indicies > _rank || __num_indicies > __tensor._rank){
    cout << "<Tensor::Contract> Error! Can't contract " << __num_indicies
	 << " between a " << _rank << " rank and a " << __tensor._rank
	 << " rank tensor." << endl;
    abort();
  }
  
  if(__num_indicies > 0) rank = _rank + __tensor._rank - 2*__num_indicies;
  else rank = abs(_rank - __tensor._rank);

  // set ret's rank and create the summed TensorIndex
  ret.SetRank(rank);
  TensorIndex indSummed;

  if(__num_indicies < 0){
    // check to see which tensor has the smaller rank (calculate how many 
    // summed indicies are needed)
    if(_rank <= __tensor._rank) sumsize = _rank;
    else sumsize = __tensor._rank;
  }
  else sumsize = __num_indicies;
  indSummed.Resize(2*sumsize);

  TensorIndex ind1(this->_rank);
  TensorIndex ind2(__tensor._rank);

  int size1 = ind1.Size();
  int size2 = ind2.Size();

  if(rank > 0){ // rank > 0, we need to do all the loops
    TensorIndex index(rank);

    while(index.IsValid()){ // loop over ret's elements

      // check to see if this will have any free indicies
      if((size1 - sumsize) > 0) ind1max = size1 - sumsize;
      else ind1max = 0;
       
      // set this index (except last ??(number of summed indicies) indicies)
      for(int i = 0; i < ind1max; i++) ind1.SetIndex(i,index[i]);

      // set __tensor index (except 1st ??(summed indicies) indicies)
      ind2st = sumsize;
      for(int i = ind2st; i < size2; i++) 
	ind2.SetIndex(i,index[ind1max+(i-ind2st)]);

      nterm = 0;
      while(indSummed.IsValid()){ // loop over summed indicies

	gFactors = g(indSummed[0],indSummed[0 + indSummed.Size()/2]);
	// get the needed amount of metric tensor factors
	for(int i = 1; i < indSummed.Size()/2; i++){
	  gFactors *= g(indSummed[i],indSummed[i + indSummed.Size()/2]);
	}
	if(gFactors != 0.0){
	  nterm++;
	  // set up last ?? this and 1st ?? __tensor indicies
	  for(int i = ind1max; i < size1;i++) 
	    ind1.SetIndex(i,indSummed[i-ind1max]);
	  for(int i = size1 - ind1max; i < indSummed.Size(); i++)
	    ind2.SetIndex(i - (size1 - ind1max),indSummed[i]);

	  // multiply the metric tensor factor by this and __tensor elements
	  element = (this->Element(ind1))*(__tensor(ind2))*gFactors;

	  // add to each element this*__tensor*g*g...*g with correct # of g's
	  if(nterm == 1) ret(index) = element;	    
	  else ret(index) += element;	    
	}
	++indSummed;
      }
      // reset the summed indicies, step up index to next ret element
      indSummed.Reset();
      ++index;
    }
  }
  else{ // both are same rank tensors (R is rank 0)
    nterm = 0;

    // loop over summed indicies (only loop needed in this case)
    while(indSummed.IsValid()){
      gFactors = g(indSummed[0],indSummed[0 + indSummed.Size()/2]);
      
      // get the needed amount of metric tensor factors
      for(int i = 1; i < indSummed.Size()/2; i++)
	gFactors *= g(indSummed[i],indSummed[i + indSummed.Size()/2]);
      
      if(gFactors != 0.0){
	nterm++;
	for(int i = 0; i < indSummed.Size()/2 ;i++){
	  ind1.SetIndex(i,indSummed[i]);
	  ind2.SetIndex(i,indSummed[i + indSummed.Size()/2]);
	}
	element = (this->Element(ind1))*(__tensor(ind2))*gFactors;
	if(nterm == 1) ret() = element;
	else ret() += element;	  
      }
      indSummed++;
    } 
  }      
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp> 
void Tensor<_Tp>::Boost(double __bx,double __by,double __bz){
   
  // check to see if bx,by,bz are all less than 1
  if(abs(__bx) >= 1 || abs(__by) >= 1 || abs(__bz) >= 1)
    cout << "Error! Attempt to boost using invalid boost vector." << endl;
  assert((abs(__bx) < 1)&&(abs(__by)<1)&&(abs(__bz)<1));

  Tensor<double> lt(2); // Lorentz transformation tensor
  double gamma = 1.0/sqrt(1.0 - __bx*__bx - __by*__by - __bz*__bz);
  double gamFact = (gamma*gamma)/(gamma + 1.0);

  // set up the Lorentz transformation tensor
  lt.Zero();

  lt(0,0) = gamma;
  lt(0,1) = gamma*__bx;
  lt(0,2) = gamma*__by;
  lt(0,3) = gamma*__bz;
  
  lt(1,1) = (__bx*__bx*gamFact)+1;
  lt(1,2) = __bx*__by*gamFact;
  lt(1,3) = __bx*__bz*gamFact;
  
  lt(2,2) = (__by*__by*gamFact)+1;
  lt(2,3) = __by*__bz*gamFact;
  
  lt(3,3) = (__bz*__bz*gamFact)+1;
  
  lt(1,0) = lt(0,1);
  lt(2,0) = lt(0,2);
  lt(2,1) = lt(1,2);
  lt(3,0) = lt(0,3);
  lt(3,1) = lt(1,3);
  lt(3,2) = lt(2,3);

  this->Transform(lt);
}
//_____________________________________________________________________________

template <typename _Tp> 
void Tensor<_Tp>::Rotate(double __alpha,double __beta,double __gamma){
    
  double ca = cos(__alpha);
  double sa = sin(__alpha);
  double cb = cos(__beta);
  double sb = sin(__beta);
  double cg = cos(__gamma);
  double sg = sin(__gamma);

  Tensor<double> lt(2); // Lorentz transformation tensor

  lt.Zero();

  lt(0,0) = 1.0;
  
  lt(1,1) = ca*cb*cg - sa*sg;
  lt(1,2) = sa*cb*cg + ca*sg;
  lt(1,3) = -sb*cg;

  lt(2,1) = -ca*cb*sg - sa*cg;
  lt(2,2) = -sa*cb*sg + ca*cg;
  lt(2,3) = sb*sg;

  lt(3,1) = ca*sb;
  lt(3,2) = sa*sb;
  lt(3,3) = cb;

  this->Transform(lt);
}
//_____________________________________________________________________________

template <typename _Tp> 
void Tensor<_Tp>::RotateX(double __alpha){
  double ca = cos(__alpha);
  double sa = sin(__alpha);
  Tensor<double> lt(2); // Lorentz transformation tensor
  lt.Zero();

  lt(0,0) = 1.0;
  lt(1,1) = 1.0;
  lt(2,2) = ca;
  lt(2,3) = -sa;
  lt(3,2) = sa;
  lt(3,3) = ca;

  this->Transform(lt);
}
//_____________________________________________________________________________

template <typename _Tp> 
void Tensor<_Tp>::RotateY(double __alpha){
  double ca = cos(__alpha);
  double sa = sin(__alpha);
  Tensor<double> lt(2); // Lorentz transformation tensor
  lt.Zero();

  lt(0,0) = 1.0;
  lt(1,1) = ca;
  lt(1,3) = sa;
  lt(2,2) = 1.0;
  lt(3,1) = -sa;
  lt(3,3) = ca;

  this->Transform(lt);
}
//_____________________________________________________________________________

template <typename _Tp> 
void Tensor<_Tp>::RotateZ(double __alpha){
  double ca = cos(__alpha);
  double sa = sin(__alpha);
  Tensor<double> lt(2); // Lorentz transformation tensor
  lt.Zero();

  lt(0,0) = 1.0;
  lt(1,1) = ca;
  lt(1,2) = -sa;
  lt(2,1) = sa;
  lt(2,2) = ca;
  lt(3,3) = 1.0;

  this->Transform(lt);
}
//_____________________________________________________________________________
template <typename _Tp>
void Tensor<_Tp>::Print(std::ostream& __os) const {
 
  if(_rank == 0) __os << "{Rank = 0 " << _data[0] << " }";
  else if(_rank == 1){
    __os << "{Rank = 1 ( " ;
    for(int mu = 0; mu < 3; mu++) __os << _data[mu] << ",";
    __os << _data[3] << ") } ";
  }
  else if(_rank == 2){
    int index;
    __os << "{Rank = 2 ";
    for(int mu = 0; mu < 4; mu++){
      __os << "(";
      for(int nu = 0; nu < 4; nu++){
	index = 4*nu + mu;
	__os << _data[index];
	if(nu < 3) __os << ",";
      }
      __os << ")";
      if(mu < 3) __os << ",";
    }
    __os << "}";
  }
  else{
    cout << "<Tensor::Print(ostream&)> Error! Can NOT print a Tensor with "
	 << " Rank > 2." << endl;
  }
}
//_____________________________________________________________________________

template <typename _Tp> template <typename T>
Tensor<typename MultType<_Tp,T>::Type>
Tensor<_Tp>::operator%(const Tensor<T> &__tensor) const {
  
  int rank = this->_rank + __tensor._rank;
  Tensor<typename MultType<_Tp,T>::Type> ret(rank);
  
  // if either tensor is rank 0, just return this*__tensor
  if((_rank == 0) || (__tensor._rank == 0)) return (*this)*__tensor;  
  else{ // we actually have to do some work
    TensorIndex index(rank);
    TensorIndex ind1(this->_rank);
    TensorIndex ind2(__tensor._rank);

    int size1 = ind1.Size();
    //    int size2 = ind2.Size(); 

    while(index.IsValid()){ // loop over ret's elements

      // set up this' indicies
      for(int i = 0; i < size1; i++) ind1.SetIndex(i,index[i]);     
      // set up _tensor's indicies
      for(int i = size1; i < index.Size(); i++) 
	ind2.SetIndex(i-size1,index[i]);
      
      // set element to product of this and __tensor elements
      ret(index) = (this->Element(ind1))*(__tensor(ind2));
      index++;
    }
  }
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::operator>>(int __shift) const {

  Tensor<_Tp> ret(_rank);
  int i,j;

  if(this->_rank > 1){
    TensorIndex index(_rank);
    TensorIndex ind(_rank);
    while(index.IsValid()){ // loop over elements
      for(i = 0; i < ind.Size(); i++){
	j = i - __shift;
	while(j < 0) j += _rank;
	ind.SetIndex(i,index[j]);
      }
      ret(index) = this->Element(ind);
      index++;
    }
  }
  else ret = (*this);
 
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::operator<<(int __shift) const {

  Tensor<_Tp> ret(_rank);
  int i,j;
  if(this->_rank > 1){
    TensorIndex index(_rank);
    TensorIndex ind(_rank);
    while(index.IsValid()){
      for(i = 0; i < ind.Size(); i++){
	j = i + __shift;
	while(j >= _rank) j -= _rank;       
	ind.SetIndex(i,index[j]);
      }
      ret(index) = this->Element(ind);
      index++;
    }
  }
  else ret = (*this);
 
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::Permute(int __mu,int __nu) const {

  Tensor<_Tp> ret(_rank);

  if((this->_rank > 1)&&(__mu < this->_rank)&&(__nu < this->_rank)){
    TensorIndex index(_rank);
    TensorIndex ind(_rank);
    while(index.IsValid()){
      ind = index;
      ind.SetIndex(__mu,index[__nu]);
      ind.SetIndex(__nu,index[__mu]);
      ret(index) = this->Element(ind);
      index++;
    }
  }
  else ret = (*this);
  
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::Order(const TensorIndexOrder &__order) const {

  if((int)__order.Size() != _rank){
    cout << "Error! Attempt to reorder tensor indicies w/ incorrect number of"
	 <<" indicies." << endl;
  }
  assert((int)__order.Size() == _rank);
  Tensor<_Tp> ret(_rank);

  if(_rank > 0){
    TensorIndex index(_rank);
    TensorIndex ind(_rank);
    while(index.IsValid()){ // loop over elements
      for(int i = 0; i < _rank; i++) ind.SetIndex(i,index[__order[i]]);
      
      ret(index) = this->Element(ind);
      index++;
    }  
  }
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::Symmetric() const {

  int nterms = 0;
  Tensor<_Tp> ret(_rank);

  // if rank < 2 just return the tensor
  if(_rank > 1){    
    TensorIndexOrder order(_rank);
    // get the 1st permutation (0,1,2,...,rank-1)
    order.Permute();
    while(order.PermIsValid()){ // loop over all valid permutations
      //      order.Print(cout);
      if(nterms == 0) ret = this->Order(order);      
      else ret += this->Order(order);      
      nterms++;
      order.Permute();
    }
    ret /= nterms;
  }
  else ret = *this;
  
  return ret;
}
//_____________________________________________________________________________

template <typename _Tp>
Tensor<_Tp> Tensor<_Tp>::AntiSymmetric() const {

  int nterms = 0,ind;
  Tensor<_Tp> ret(_rank);
  double sign;

  // if rank < 2 just return the tensor
  if(_rank > 1){    
    TensorIndexOrder order(_rank);
    sign = 1.0;
    ind = 1;
    // get the 1st permuation (0,1,2,...,rank -1)
    order.Permute();
    while(order.PermIsValid()){ // loop over all valid permuations
      if(nterms == 0) ret = (this->Order(order))*sign;      
      else ret += (this->Order(order))*sign;
      
      ind++;
      // TensorIndex::Permute returns the permuations in such a way that the 
      // sign for the terms go +--++--++...
      if(ind == 2){
	sign *= -1.0;
	ind = 0;
      }
      nterms++;
      order.Permute();
    }
    ret /= nterms;
  }
  else ret = *this;
  
  return ret;
}
//_____________________________________________________________________________

template<typename _Tp> void Tensor<_Tp>::Transform(const Tensor<double> &__lt){

  if(__lt.Rank() != 2)
    cout << "Error! Lorentz transformation tensor NOT rank 2." << endl;
  assert(__lt.Rank() == 2);
  int rank = this->Rank();
  if(rank > 0) { // if rank 0 no transformation needed
    TensorIndex index(rank);
    TensorIndex indSummed(rank);
    int nterm;
    double lamFact;
    // make a copy
    Tensor<_Tp> copy(*this);
   
    while(index.IsValid()){  // loop over elements of this tensor
      nterm = 0;
      while(indSummed.IsValid()){
	// get the appropriate number of Lambda_mu_nu factors
	lamFact = __lt(index[0],indSummed[0]);
	for(int i = 1; i < rank; i++) lamFact *= __lt(index[i],indSummed[i]);
	if(lamFact != 0.0){
	  nterm++;
	  // add to each element this*Lambda*Lambda*...*Lambda 
	  if(nterm == 1) (*this)(index) = lamFact*(copy(indSummed));	
	  else (*this)(index) += lamFact*(copy(indSummed));	  
	}
	++indSummed;
      }
      // reset summed indicies, step up index to next element
      indSummed.Reset();
      ++index;
    }
  }
}
//_____________________________________________________________________________

#endif /* _Tensor_TCC */