Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Tensor class definition file -*- C++ -*-
/* Copyright 2008 Mike Williams (mwill@jlab.org)
*
* This file is part of qft++.
*
* qft++ is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* qft++ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with qft++. If not, see <http://www.gnu.org/licenses/>.
*/
// Author: Mike Williams
#ifndef _Tensor_H
#define _Tensor_H
//_____________________________________________________________________________
// Standard C++ Headers:
#include <iostream>
#include <cassert>
#include <vector>
#include <complex>
#include <cstdlib>
// Local Headers:
#include "qft++/topincludes/c++-template-utils.hh"
#include "qft++/tensor/Tensor_Base.hh"
#include "qft++/tensor/TensorIndex.hh"
//_____________________________________________________________________________
/** @file Tensor.h
* @brief Tensor template class definition file.
*/
//_____________________________________________________________________________
using namespace std;
//_____________________________________________________________________________
/** @class Tensor
* @author Mike Williams
*
* @brief General template class for handling tensors and tensor operations.
*
* Tensor is a template class for handling tensors and tensor operations.
* A Tensor object can be any rank and store any type that can be
* stored in a C++ container class. This class has been written to be as
* general and flexible as possible. Parameter passing has been optimized
* using the Type class. Tensor has been designed so that two instantiations,
* Tensor<_A> and Tensor<_B>, are completely compatible as long as _A and _B
* are compatible (eg. _A*_B,_A+_B,...are defined). Return types of
* <em>mixed type</em> tensor operations are determined by the OperationType
* template classes (MultType,DivType,AddType,SubType).
*
* <b>Example Usage </b>
*
* \include Tensor.ex
*/
//_____________________________________________________________________________
template <typename _Tp> class Tensor : public Tensor_Base {
protected:
// attributes:
vector<_Tp> _data; ///< Tensor elements (type _Tp)
private:
// private functions:
/// Copy @a tensor elements to @a this tensor
template<typename T> void _Copy(const Tensor<T> &__tensor){
int size = __tensor.Size();
_data.resize(size);
for(int i = 0; i < size; i++) _data[i] = __tensor._data[i];
}
protected:
// friends:
template <typename T> friend class Tensor;
public:
// create/copy/destroy:
/** Default Constructor (rank 0)*/
Tensor() : Tensor_Base(), _data(1) {}
/// Constructor
/** @param rank Rank of the Tensor */
Tensor(int __rank) : Tensor_Base(__rank),_data(1 << (__rank << 1)){}
/** Constructor
* @param rank Rank of the Tensor
* @param init Initial value of Tensor elements
*/
Tensor(int __rank,typename Type<_Tp>::ParamType __init):
Tensor_Base(__rank),_data(1 << (__rank << 1),__init){}
/// Copy Constructor
template<typename T> Tensor(const Tensor<T> &__tensor):Tensor_Base(__tensor){
this->_Copy(__tensor);
}
/** Destructor */
virtual ~Tensor(){}
// basic functions:
/// Returns the number of elements in the tensor
inline int Size() const {
return(1 << (_rank << 1));
}
/** Set each element of @a this tensor to zero
* Note: Legal if zero(_Tp) is legal
* (see c++-template-utils/TemplateUtilFuncs.h)
*/
inline void Zero() {
_Tp var_type;
for(int i = 0; i < this->Size(); i++) _data[i] = zero(var_type);
}
/// Removes all elements from the tensor
void Clear() {
if(!_data.empty()) _data.clear();
_rank = -1;
}
/// Set the rank of the tensor to @a rank
inline void SetRank(int __rank) {
_data.resize(1 << (__rank << 1));
_rank = __rank;
}
/** Boost using transformation defined by \f$\vec{\beta}=(bx,by,bz)\f$
*
* Set \f$ X_{\mu\nu\ldots} = X_{\delta\pi\ldots}
* \Lambda^{\delta}{}_{\mu}(\vec{\beta})\Lambda^{\pi}{}_{\nu}(\vec{\beta})
* \ldots \f$.
*/
void Boost(double __bx,double __by,double __bz);
/// Boost the Tensor to the rest frame of the 4-momentum @a p4.
void Boost(const Tensor<double> &__p4) {
if(__p4.Rank() != 1) cout << "Error! 4-momentum NOT rank 1." << endl;
assert(__p4.Rank() == 1);
this->Boost(-(__p4(1)/__p4(0)),-(__p4(2)/__p4(0)),-(__p4(3)/__p4(0)));
}
/// Rotate the tensor using Euler angles \f$ \alpha,\beta,\gamma \f$.
void Rotate(double __alpha,double __beta,double __gamma);
/// Rotate about the x-axis
void RotateX(double __alpha);
/// Rotate about the y-axis
void RotateY(double __alpha);
/// Rotate about the z-axis
void RotateZ(double __alpha);
/** Send the values of the tensor elements to @a os.
*
* @param os ostream object (defaults to cout)
* Note: This function will only print tensors with rank <= 2
*/
void Print(std::ostream& __os = std::cout) const;
// Getters:
/// Returns a constant reference to the @a entry element
inline const _Tp& operator[](int __entry) const {
return _data[__entry];
}
/// Returns a reference to the @a entry element
inline _Tp& operator[](int __entry) {
return _data[__entry];
}
/** Returns the \f$ (\mu,\nu,\rho,\sigma,\delta,\pi) \f$ element
* The arguments all default to zero. Thus, for a rank @a R tensor, only
* @a R indicies should be specified. For example, Element(1,2,0) will
* access the mu = 1, nu = 2, rho = 0 element of a 3rd rank tensor, etc.
*/
inline const _Tp& Element(int __mu = 0,int __nu = 0,int __rho = 0,
int __sig = 0,int __del = 0,int __pi = 0) const {
int index = (__pi << 10) + (__del << 8) + (__sig << 6) + (__rho << 4)
+ (__nu << 2) + __mu;
bool valid = index < this->Size();
if(!valid)
cout << "Error! Attempt to access non-existant Tensor element." << endl;
assert(valid);
return _data[index];
}
/** Returns the \f$ (\mu,\nu,\rho,\sigma,\delta,\pi) \f$ element
* The arguments all default to zero. Thus, for a rank @a R tensor, only
* @a R indicies should be specified. For example, Element(1,2,0) will
* access the mu = 1, nu = 2, rho = 0 element of a 3rd rank tensor, etc.
*/
inline _Tp& Element(int __mu = 0,int __nu = 0,int __rho = 0,int __sig = 0,
int __del = 0,int __pi = 0) {
int index = (__pi << 10) + (__del << 8) + (__sig << 6) + (__rho << 4)
+ (__nu << 2) + __mu;
bool valid = index < this->Size();
if(!valid)
cout << "Error! Attempt to access non-existant Tensor element." << endl;
assert(valid);
return _data[index];
}
/** Returns the \f$ (\mu,\nu,\rho,\sigma,\delta,\pi) \f$ element
* See Element for details
*/
inline const _Tp& operator()(int __mu = 0,int __nu = 0,int __rho = 0,
int __sig = 0,int __del = 0,int __pi = 0)const{
return this->Element(__mu,__nu,__rho,__sig,__del,__pi);
}
/** Returns the \f$ (\mu,\nu,\rho,\sigma,\delta,\pi) \f$ element
* See Element for details
*/
inline _Tp& operator()(int __mu = 0,int __nu = 0,int __rho = 0,int __sig = 0,
int __del = 0,int __pi = 0) {
return this->Element(__mu,__nu,__rho,__sig,__del,__pi);
}
/// Return the element given by @a index (see TensorIndex for details)
inline _Tp& Element(const TensorIndex &__index) {
return _data[__index()];
}
/// Return the element given by @a index (see TensorIndex for details)
inline const _Tp& Element(const TensorIndex &__index) const {
return _data[__index()];
}
/// Return the element given by @a index
inline _Tp& operator()(const TensorIndex &__index) {
return _data[__index()];
}
/// Return the element given by @a index
inline const _Tp& operator()(const TensorIndex &__index) const {
return _data[__index()];
}
// operators:
/** Assignment operator
* Note: Legal if @a Tp = @a T is a legal assignment.
*/
template<typename T> Tensor<_Tp>& operator=(const Tensor<T>& __tensor){
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
if(!this->RankCheck(__tensor)) this->SetRank(__tensor.Rank());
this->Tensor_Base::operator=(__tensor);
this->_Copy(__tensor);
return *this;
}
/** Assignment operator (rank 0 only)
* Note: Legal if @a Tp = @a T is a legal assignment.
*/
template<typename T>
typename DisableIf<IsTensor(T),Tensor<_Tp>&>::Type operator=(const T &__x){
if(_rank != 0)
cout << "Error! Attempt to assign tensor (rank > 0) to a scalar" << endl;
assert(_rank == 0);
_data[0] = __x;
return *this;
}
/// Conversion operator to type @a Tp (valid only for rank 0)
operator _Tp () const {
if(_rank != 0) {
cout << "Error! Attempt to convert a tensor (rank != 0) to a scalar."
<< endl;
}
assert(_rank == 0);
return _data[0];
}
/** Contracts the last index of @a this with the 1st index of @a tensor
*
* Returns \f$ R_{\mu_1\mu_2\ldots\nu_1\nu_2\ldots}
* = X_{\mu_1\mu_2\ldots\rho} T^{\rho}{}_{\nu_1\nu_2\ldots} \f$
*
* Note: Legal if @a Tp * @a T is a legal operation.
*
* Return type is Tensor<typename MultType<_Tp,T>::Type> where MultType is
* the return type of Tp * T (defined in OperationType.h).
*
* Example: Define Tensor<float> A(2),B(3), then A*B is a 3rd rank tensor
* equal to \f$ A_{\mu\nu} B^{\nu}{}_{\pi\delta} \f$
*/
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
operator*(const Tensor<T> &__tensor) const {
return this->Contract(__tensor,1);
}
/** Tensor inner product (contracts as many indicies as possible)
*
* Returns \f$ R_{\rho\pi\ldots} = X_{\mu_1\mu_2\ldots}
* T^{\mu_1\mu_2\ldots}{}_{\rho\pi\ldots} \f$ or
* \f$ X_{\mu_1\mu_2\ldots\rho\pi\ldots} T^{\mu_1\mu_2\ldots} \f$
* depending on which Tensor has the higher rank.
*
* Note: Legal if @a Tp * @a T is a legal operation.
*
* Return type is Tensor<typename MultType<_Tp,T>::Type> where MultType is
* the return type of Tp * T (defined in OperationType.h)
*
* Example: Define Tensor<float> A(2),B(3), then (A|B) is a 1st rank tensor
* equal to \f$ A_{\mu\nu} B^{\mu\nu}{}_{\alpha} \f$
*
* Note: If the 2 tensors have the same rank then (A|B) is a rank 0 tensor.
*/
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
operator|(const Tensor<T> &__tensor) const {
return this->Contract(__tensor,-1);
}
/** Tensor outer product.
*
* Returns \f$ R_{\mu_1\mu_2\ldots\nu_1\nu_2\ldots} = X_{\mu_1\mu_2\ldots}
* T{\nu_1\nu_2\ldots} \f$
*
* Note: Legal if @a Tp * @a T is a legal operation.
*
* Return type is Tensor<typename MultType<_Tp,T>::Type> where MultType is
* the return type of Tp * T (defined in OperationType.h)
*
* Example: define Tensor<float> A(2),B(3) then A%B is a 5th rank tensor
* where A%B = \f$ A_{\mu\nu} B_{\rho\pi\delta} \f$
*/
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
operator%(const Tensor<T> &__tensor) const;
/** Returns \f$ R_{\mu\nu\ldots} = X_{\mu\nu\ldots} \times x \f$
* Note: Legal if @a Tp * @a T is a legal operation.
*/
template<typename T>
typename EnableIf<IsScalar(T),Tensor<typename MultType<_Tp,T>::Type> >::Type
operator*(const T &__x) const {
Tensor<typename MultType<_Tp,T>::Type> ret(_rank);
int size = this->Size();
for(int i = 0; i < size; i++) ret[i] = _data[i] * __x;
return ret;
}
/** Returns \f$ R_{\mu\nu\ldots} = X_{\mu\nu\ldots} / x \f$
* Note: Legal if @a Tp / @a T is a legal operation.
*/
template<typename T>
typename EnableIf<IsScalar(T),Tensor<typename DivType<_Tp,T>::Type> >::Type
operator/(const T &__x) const {
Tensor<typename DivType<_Tp,T>::Type> ret(_rank);
int size = this->Size();
for(int i = 0; i < size; i++) ret[i] = _data[i] / __x;
return ret;
}
/** Returns \f$ R_{\mu\nu\ldots} = X_{\mu\nu\ldots} + T_{\mu\nu\ldots} \f$
* Note: Legal if @a Tp + @a T is a legal operation.
*/
template<typename T> Tensor<typename AddType<_Tp,T>::Type>
operator+(const Tensor<T> &__tensor) const {
if(this->Rank() != __tensor.Rank())
cout << "Error! Attempt to add tensors w/ different ranks." << endl;
assert(_rank == __tensor._rank);
Tensor<typename AddType<_Tp,T>::Type> ret(_rank);
int size = this->Size();
for(int i = 0; i < size; i++) ret._data[i] = _data[i] + __tensor._data[i];
return ret;
}
/** Returns \f$ R_{\mu\nu\ldots} = X_{\mu\nu\ldots} - T_{\mu\nu\ldots} \f$
* Note: Legal if @a Tp - @a T is a legal operation.
*/
template<typename T> Tensor<typename SubType<_Tp,T>::Type>
operator-(const Tensor<T> &__tensor) const {
if(this->Rank() != __tensor.Rank())
cout << "Error! Attempt to subtract tensors w/ different ranks." << endl;
assert(_rank == __tensor._rank);
Tensor<typename SubType<_Tp,T>::Type> ret(_rank);
int size = this->Size();
for(int i = 0; i < size; i++) ret._data[i] = _data[i] - __tensor._data[i];
return ret;
}
/** Rank 0 tensor + scalar
* Note: Legal if @a Tp + @a T is a legal operation.
*/
template<typename T>
typename EnableIf<IsScalar(T),Tensor<typename AddType<_Tp,T>::Type> >::Type
operator+(const T &__x) const {
if(_rank != 0)
cout << "Error! Attempt to add tensor (rank > 0) to a scalar" << endl;
assert(_rank == 0);
Tensor<typename AddType<_Tp,T>::Type> ret(0);
ret() = _data[0] + __x;
return ret;
}
/** Rank 0 tensor - scalar
* Note: Legal if @a Tp - @a T is a legal operation.
*/
template<typename T>
typename EnableIf<IsScalar(T),Tensor<typename SubType<_Tp,T>::Type> >::Type
operator-(const T &__x) const {
if(_rank != 0){
cout << "Error! Attempt to subtract tensor (rank > 0) from a scalar"
<< endl;
}
assert(_rank == 0);
Tensor<typename SubType<_Tp,T>::Type> ret(0);
ret() = _data[0] - __x;
return ret;
}
/// Set @a this = @a this * @a tensor
template<typename T> Tensor<_Tp>& operator*=(const Tensor<T> &__tensor){
(*this) = (*this) * __tensor;
return *this;
}
/// Set @a this = @a this * @a x
template<typename T> typename EnableIf<IsScalar(T),Tensor<_Tp>&>::Type
operator*=(const T &__x){
(*this) = (*this) * __x;
return *this;
}
/// Set @a this = @a this / @a x
template<typename T> typename EnableIf<IsScalar(T),Tensor<_Tp>&>::Type
operator/=(const T &__x){
(*this) = (*this) / __x;
return *this;
}
/// Set @a this = @a this + @a tensor
template<typename T> Tensor<_Tp>& operator+=(const Tensor<T> &__tensor) {
(*this) = (*this) + __tensor;
return *this;
}
/// Set @a this = @a this - @a tensor
template<typename T> Tensor<_Tp>& operator-=(const Tensor<T> &__tensor) {
(*this) = (*this) - __tensor;
return *this;
}
/** This operator shifts the indicies to right @a shift places.
*
* Example: define Tensor<float> A(4), then A>>2 returns the tensor
* \f$ A_{\rho\pi\mu\nu} \f$ if \f$ A = A_{\mu\nu\rho\pi} \f$
*
* Note: just returns the tensor if rank < 2
*/
Tensor operator>>(int __shift) const;
/** This operator shifts the indicies to the left @a shift places.
* See operator>> for details.
*/
Tensor operator<<(int __shift) const;
/** Comparison operator
* Requires ranks be the same and each element return @a false under !=
*/
inline bool operator==(const Tensor<_Tp> &__tensor) const {
if(!this->RankCheck(__tensor)) return false;
int size = this->Size();
for(int i = 0; i < size; i++)
if(_data[i] != __tensor._data[i]) return false;
return true;
}
/// Comparison operator (see operator== for details)
inline bool operator!=(const Tensor<_Tp> &__tensor) const {
return !(*this == __tensor);
}
// a few extra contraction functions:
/** Contract 2 tensors.
* @param tensor Tensor to contract with @a this
* @param num_indicies Number of indicies to contract (defaults to all)
*
* Returns \f$ R_{\mu_1\mu_2\ldots\nu_1\nu_2\ldots}
* = X_{\mu_1\mu_2\ldots\alpha_1\alpha_1\ldots\alpha_n}
* T^{\alpha_1\alpha_2\ldots\alpha_n}{}_{\nu_1\nu_2\ldots} \f$
*
* Note: Legal if @a Tp * @a T is a legal operation.
*
* Return type is Tensor<typename MultType<_Tp,T>::Type> where MultType is
* the return type of Tp * T (defined in OperationType.h)
*
* Example: define Tensor<float> A(2),B(3), then A.Contract(B) is a 1st rank
* tensor equal to \f$ A_{\mu\nu} B^{\mu\nu\delta} \f$, and
* A.Contract(B,1) is a 3rd rank tensor equal to
* \f$ A^{\mu}{}_{\alpha} B^{\alpha\nu\delta} \f$, etc...
*
*/
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
Contract(const Tensor<T> &__tensor,int __num_indicies = -1) const;
// some miscelaneous functions:
/** Permutes the indicies specified by @a mu and @a nu.
*
* Example: define Tensor<float> A(3), then A.Permute(0,2) will permute the
* 1st and 3rd indicies returning \f$ A_{\rho\nu\mu} \f$ if
* \f$ A = A_{\mu\nu\rho} \f$ (C indexing, starts from zero)
*
* Note: just returns the tensor if rank < 2 or either mu or nu >= rank
*/
Tensor Permute(int __mu,int __nu) const;
/** Reorder the indicies of the tensor given by @a order.
*
* Example: If order = (0,2,1), then Tensor<float> A(3) A.Order(order)
* returns \f$ A_{\mu\rho\nu} \f$ if \f$ A = A_{\mu\nu\rho} \f$.
*/
Tensor Order(const TensorIndexOrder &__order) const;
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/** Returns the symmetric tensor built from the current tensor.
*
* Example: define Tensor<float> A(3), if \f$ A = A_{\mu\nu\rho} \f$ then
* A.Symmetric() = \f$ (A_{\mu\nu\rho} + A_{\mu\rho\nu} + A_{\nu\mu\rho}
* + A_{\nu\rho\mu} + A_{\rho\mu\nu} + A_{\rho\nu\mu})/6.0 \f$
*/
Tensor Symmetric() const;
/** Returns the anti-symmetric Tensor built from the current Tensor.
*
* Example: define Tensor<float> A(3), if \f$ A = A_{\mu\nu\rho} \f$ then
* A.AntiSymmetric() = \f$ (A_{\mu\nu\rho} - A_{\mu\rho\nu} - A_{\nu\mu\rho}
* + A_{\nu\rho\mu} + A_{\rho\mu\nu} - A_{\rho\nu\mu})/6.0 \f$
*/
Tensor AntiSymmetric() const;
/** Returns the complex conjugate of @a this tensor
* Note: Legal if conj(_Tp) exists
* (see c++-template-utils/TemplateUtilFuncs.h)
*/
Tensor<_Tp> Conjugate() const {
Tensor<_Tp> ret(_rank);
int size = this->Size();
for(int i = 0; i < size; i++) ret[i] = conj(_data[i]);
return ret;
}
/// Return the magnitude squared (\f$ X_{\mu\nu...} X^{\mu\nu...} \f$)
inline _Tp Mag2() const {
return ((*this)|(*this)).Element();
}
/// Tensor outer product (see operator% for details)
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
OutterProduct(const Tensor<T> &__tensor) const {
return (*this) % __tensor;
}
/// Tensor inner product (see operator| for details)
template<typename T> Tensor<typename MultType<_Tp,T>::Type>
InnerProduct(const Tensor<T> &__tensor) const {
return ( (*this) | __tensor);
}
/** Lorentz transform the tensor.
*
* @param lt A Lorentz transformation tensor (\f$ \Lambda^{\mu}{}_{\nu}\f$)
*
* This function performs a Lorentz transformation on @a this tensor given
* by \f$ X_{\mu_1 \mu_2 ...} \Lambda^{\mu_1}{}_{\nu_1}
* \Lambda^{\mu_2}{}_{\nu_2} ... \f$
*/
void Transform(const Tensor<double> &__lt);
};
//_____________________________________________________________________________
/// Scalar * tensor (see Tensor::operator*)
template<typename T1,typename T2>
typename EnableIf<IsScalar(T1),Tensor<typename MultType<T1,T2>::Type> >::Type
operator*(const T1 &__x,const Tensor<T2> &__tensor){
Tensor<typename MultType<T1,T2>::Type> ret(__tensor.Rank());
int size = __tensor.Size();
for(int i = 0; i < size; i++) ret[i] = __x * __tensor[i];
return ret;
}
//_____________________________________________________________________________
/// Scalar + rank 0 tensor (see Tensor::operator+)
template<typename T1,typename T2>
typename EnableIf<IsScalar(T1),Tensor<typename AddType<T1,T2>::Type> >::Type
operator+(const T1 &__x,const Tensor<T2> &__tensor){
return __tensor + __x;
}
//_____________________________________________________________________________
/// Scalar - rank 0 tensor (see Tensor::operator-)
template<typename T1,typename T2>
typename EnableIf<IsScalar(T1),Tensor<typename SubType<T1,T2>::Type> >::Type
operator-(const T1 &__x,const Tensor<T2> &__tensor){
return (__tensor - __x) * -1.;
}
//_____________________________________________________________________________
/// ostream operator for the Tensor class
template <typename T>
inline std::ostream& operator<<(std::ostream& __os,const Tensor<T> &__tensor){
__tensor.Print(__os);
return __os;
}
//_____________________________________________________________________________
/// Return the real part of the tensor
template <typename T>
Tensor<T> Real(const Tensor<complex<T> > &__tensor){
Tensor<T> real(__tensor.Rank());
for(int i = 0; i < __tensor.Size(); i++) real[i] = __tensor[i].real();
return real;
}
//_____________________________________________________________________________
//
// Specifications of functions in TemplateUtilFuncs.h for the Tensor class
//_____________________________________________________________________________
/// Returns a Tensor = T.Zero() (of the same rank as @a tensor)
template <typename T> inline Tensor<T> zero(const Tensor<T> &__tensor) {
Tensor<T> ret(__tensor.Rank());
ret.Zero();
return ret;
}
//_____________________________________________________________________________
/// Same as Tensor::Conjugate
template <typename T> inline Tensor<T> conj(const Tensor<T> &__tensor) {
return __tensor.Conjugate();
}
//_____________________________________________________________________________
/// Returns a rank 0 tensor with value unity(_Tp)
template <typename T> inline Tensor<T> unity(const Tensor<T> &__tensor) {
Tensor<T> ret(0);
T var_type;
ret() = unity(var_type);
return ret;
}
//_____________________________________________________________________________
#endif /* _Tensor_H */