#include "qft++/relativistic-quantum-mechanics/Utils.hh" #include "qft++/relativistic-quantum-mechanics/BlattWeisskopf.hh" /* Copyright 2008 Mike Williams (mwill@jlab.org) * * This file is part of qft++. * * qft++ is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * qft++ is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with qft++. If not, see <http://www.gnu.org/licenses/>. */ //_____________________________________________________________________________ /** @file Utils.C * @brief Utility function source file */ //_____________________________________________________________________________ /// Utility function used by Clebsch inline double dfact(double __x){ if((__x < 0.00001) && (__x >= 0.0)) return 1.; if(__x < 0) return 0.; return __x*dfact(__x - 1.); } //_____________________________________________________________________________ /// Returns i! inline int factorial(int __i) { if (__i<0){ cerr << endl; cerr << "factoral value " << __i << " must be >=0 !!! " << endl; exit(1); } int f = 1; if((__i == 0) || (__i == 1)) f = 1; else{ while(__i > 0){ f = f*__i; __i--; } } return f; } //_____________________________________________________________________________ // define a few macros #define MAX(x,y) (x>y ? x : y) #define MIN(x,y) (x<y ? x : y) //_____________________________________________________________________________ vector<LS> GetValidLS(const Spin &__j,int __parity,const Spin &__s1,int __p1, const Spin &__s2,int __p2){ vector<LS> valid_ls; LS ls; for(Spin S = abs(__s1 - __s2); S <= (__s1 + __s2); S++){ for(int L = (int)abs(__j - S); L <= (int)(__j + S); L++){ // check the parity if(abs(__p1*__p2*pow(-1.,L) - __parity) < 1.e-5) { ls.L = L; ls.S = S; valid_ls.push_back(ls); } } } return valid_ls; } //_____________________________________________________________________________ double Gamma(double __z){ float x = abs(__z); // Coefficients for the series expansion double c[7] = { 2.5066282746310005, 76.18009172947146, -86.50532032941677 ,24.01409824083091, -1.231739572450155, 0.1208650973866179e-2 ,-0.5395239384953e-5}; double y = x; double tmp = x + 5.5; tmp = (x+0.5)*log(tmp)-tmp; double ser = 1.000000000190015; for(int i = 1; i < 7; i++) { y += 1; ser += c[i]/y; } double lnGamma = tmp+log(c[0]*ser/x); // natural log of Gamma(z) if(__z > 0) return exp(lnGamma); else if(__z == 0.) return 0.; else { double pi = 3.1415926535; return (-1.*pi)/(exp(lnGamma)*sin(pi*x)*x); } } //_____________________________________________________________________________ double Clebsch(const Spin &__j1,const Spin &__m1,const Spin &__j2, const Spin &__m2,const Spin &__J,const Spin &__M){ if((__m1 + __m2) != __M) return 0.; if(abs(__m1) > __j1) return 0; if(abs(__m2) > __j2) return 0; // convert to pure integers (each 2*spin) int j1 = (int)(2.*__j1); int m1 = (int)(2.*__m1); int j2 = (int)(2.*__j2); int m2 = (int)(2.*__m2); int J = (int)(2.*__J); int M = (int)(2.*__M); double n0,n1,n2,n3,n4,n5,d0,d1,d2,d3,d4,A,exp; int nu = 0; double sum = 0; while(((d3=(j1-j2-M)/2+nu) < 0)||((n2=(j1-m1)/2+nu) < 0 )) { nu++;} while (((d1=(J-j1+j2)/2-nu) >= 0) && ((d2=(J+M)/2-nu) >= 0) &&((n1=(j2+J+m1)/2-nu) >= 0 )){ d3=((j1-j2-M)/2+nu); n2=((j1-m1)/2+nu); d0=dfact((double) nu); exp=nu+(j2+m2)/2; n0 = (double) pow(-1.,exp); sum += ((n0*dfact(n1)*dfact(n2))/(d0*dfact(d1)*dfact(d2)*dfact(d3))); nu++; } if (sum == 0) return 0; n0 = J+1; n1 = dfact((double) (J+j1-j2)/2); n2 = dfact((double) (J-j1+j2)/2); n3 = dfact((double) (j1+j2-J)/2); n4 = dfact((double) (J+M)/2); n5 = dfact((J-M)/2); d0 = dfact((double) (j1+j2+J)/2+1); d1 = dfact((double) (j1-m1)/2); d2 = dfact((double) (j1+m1)/2); d3 = dfact((double) (j2-m2)/2); d4 = dfact((double) (j2+m2)/2); A = ((double) (n0*n1*n2*n3*n4*n5))/((double) (d0*d1*d2*d3*d4)); return sqrt(A)*sum; } //_____________________________________________________________________________ double Wigner_d(const Spin &__j,const Spin &__m,const Spin &__n,double __beta){ int J = (int)(2.*__j); int M = (int)(2.*__m); int N = (int)(2.*__n); int temp_M, k, k_low, k_hi; double const_term = 0.0, sum_term = 0.0, d = 1.0; int m_p_n, j_p_m, j_p_n, j_m_m, j_m_n; int kmn1, kmn2, jmnk, jmk, jnk; double kk; if (J < 0 || abs (M) > J || abs (N) > J) { cerr << endl; cerr << "d: you have entered an illegal number for J, M, N." << endl; cerr << "Must follow these rules: J >= 0, abs(M) <= J, and abs(N) <= J." << endl; cerr << "J = " << J << " M = " << M << " N = " << N << endl; return 0.; } if (__beta < 0) { __beta = fabs (__beta); temp_M = M; M = N; N = temp_M; } m_p_n = (M + N) / 2; j_p_m = (J + M) / 2; j_m_m = (J - M) / 2; j_p_n = (J + N) / 2; j_m_n = (J - N) / 2; kk = (double)factorial(j_p_m)*(double)factorial(j_m_m) *(double)factorial(j_p_n) * (double)factorial(j_m_n) ; const_term = pow((-1.0),(j_p_m)) * sqrt(kk); k_low = MAX(0, m_p_n); k_hi = MIN(j_p_m, j_p_n); for (k = k_low; k <= k_hi; k++) { kmn1 = 2 * k - (M + N) / 2; jmnk = J + (M + N) / 2 - 2 * k; jmk = (J + M) / 2 - k; jnk = (J + N) / 2 - k; kmn2 = k - (M + N) / 2; sum_term += pow ((-1.0), (k)) * ((pow (cos (__beta / 2.0), kmn1)) * (pow (sin (__beta / 2.0), jmnk))) / (factorial (k) * factorial (jmk) * factorial (jnk) * factorial (kmn2)); } d = const_term * sum_term; return d; } // double Wigner_d_new(const Spin &__j,const Spin &__m,const Spin &__n,double __beta){ // int J = (int)(2.*__j); // int M = (int)(2.*__m); // int N = (int)(2.*__n); // int temp_M, k, k_low, k_hi; // double const_term = 0.0, sum_term = 0.0, d = 1.0; // int m_p_n, j_p_m, j_p_n, j_m_m, j_m_n, m_n_n; // int kmn2, jmnk, jmk, jnk; // double kk; // if (J < 0 || abs (M) > J || abs (N) > J) { // cerr << endl; // cerr << "d: you have entered an illegal number for J, M, N." << endl; // cerr << "Must follow these rules: J >= 0, abs(M) <= J, and abs(N) <= J." // << endl; // cerr << "J = " << J << " M = " << M << " N = " << N << endl; // return 0.; // } // double preFactor=1.; // if (M<0 && N<0){ // preFactor=pow(-1.,M-N); // M=-M; // N=-N; // } // if (M < N){ // __beta = -__beta; // temp_M = M; // M = N; // N = temp_M; // } // m_p_n = (M + N) / 2; // j_p_m = (J + M) / 2; // j_m_m = (J - M) / 2; // j_p_n = (J + N) / 2; // j_m_n = (J - N) / 2; // m_n_n = (M - N) / 2; // kk = (double)factorial(j_p_m)*(double)factorial(j_m_m) // *(double)factorial(j_p_n) * (double)factorial(j_m_n) ; // // const_term = pow((-1.0),(m_n_n)) * sqrt(kk); // const_term = sqrt(kk); // // k_low = MAX(0, 0); // k_low = 0; // k_hi = MIN(j_p_n, j_m_m); // for (k = k_low; k <= k_hi; k++) { // // kmn1 = 2 * k - (M - N) / 2; // jmnk = J + (N - M) / 2 - 2 * k; // jmk = (J - M) / 2 - k; // jnk = (J + N) / 2 - k; // kmn2 = k + (M - N) / 2; // int mmn2k=(M - N)/2 + 2 * k; // // std::cout << "kmn1=\t" << kmn1 <<"\n" // // << "jmnk=\t" << jmnk <<"\n" // // << "jmk=\t" << jmk <<"\n" // // << "jnk=\t" << jnk <<"\n" // // << "kmn2=\t" << kmn2 <<"\n" // // << "mmn2k=\t" << mmn2k <<"\n" // // << std::endl; // sum_term += pow ((-1.0), (k)) * // ((pow (cos (__beta / 2.0), jmnk)) * (pow (sin (__beta / 2.0), mmn2k))) / // (factorial (k) * factorial (jmk) * factorial (jnk) * factorial (kmn2)); // } // d = preFactor*const_term * sum_term; // return d; // } //_____________________________________________________________________________ complex<double> BreitWigner(const Vector4<double> &__p4,double __mass, double __width){ complex<double> i(0.,1.); return __mass*__width/(__mass*__mass - __p4*__p4- i*__mass*__width); } complex<double> BreitWignerRel(const Vector4<double> &__p4,double __mass, double __width, double __massA, double __massB){ complex<double> i(0.,1.); double mass0=__p4.Mass(); complex<double> rho0_m0=phaseSpaceFac(mass0, __massA, __massB); return __mass*(__width/rho0_m0)/(__mass*__mass - __p4*__p4- i*__mass*__width); } // complex<double> BreitWignerBlattW(const Vector4<double> &__p4, double __massA, double __massB, double __mass0, double __width, int __LL){ if( (__massA < 0.) || (__massB < 0.) || __mass0<0.) { std::cout << "Invalid mass values " << __massA << "\t" << __massB << "\t" << __mass0 <<std::endl; assert(0); } if (__LL==0) return BreitWigner(__p4,__mass0,__width); complex<double> i(0.,1.); double massAB=__p4.Mass(); if ( (__massA+__massB) > __mass0) return BreitWigner(__p4,__mass0,__width); if ( (__massA+__massB) > massAB) return BreitWigner(__p4,__mass0,__width); // break up momentum q0 double q0=sqrt( (__mass0*__mass0-(__massA+__massB)*(__massA+__massB)) * (__mass0*__mass0-(__massA-__massB)*(__massA-__massB)) ) /(2*__mass0); // break up momentum qab double qab=sqrt( (massAB*massAB-(__massA+__massB)*(__massA+__massB)) * (massAB*massAB-(__massA-__massB)*(__massA-__massB)) ) /(2*massAB); // phase space factor rhoM0 double rhoM0=2*q0/__mass0; // phase space factor rhoMab double rhoMab=2*qab/massAB; // R=1.5 GeV-1 for intermediate resonances BlattWeisskopf blattWk(__LL, 1.5, q0); double blattWqq0=blattWk(qab); complex<double> result=__mass0*__width*blattWqq0/ (__mass0*__mass0 - massAB*massAB - i*(__mass0*__width* blattWqq0* blattWqq0* rhoMab/rhoM0)); return result; } // complex<double> FlatteA980(const Vector4<double> &__p4, double __mass0, double g_KK, double g_EtaPi){ complex<double> i(0.,1.); const double mPipm=0.13957018; const double mEta=0.547853; const double mKpm=0.493677; const double mK0=0.497614; double mAB=__p4.Mass(); if( (mAB < 1e-8)){ std::cout << "Invalid KK mass " << mAB << " < 1e-8" <<std::endl; assert(0); } //calculate phase-space factors double mPiMmEtaSqr=((mPipm-mEta)/mAB)*((mPipm-mEta)/mAB); if (mPiMmEtaSqr>1.) mPiMmEtaSqr=1.; double mPiMpEtaSqr=((mPipm+mEta)/mAB)*((mPipm+mEta)/mAB); if (mPiMpEtaSqr>1.) mPiMpEtaSqr=1.; double mKpmmK0Sqr=((mKpm-mK0)/mAB)*((mKpm-mK0)/mAB); if (mKpmmK0Sqr>1.) mKpmmK0Sqr=1.; double mKpmpK0Sqr=((mKpm+mK0)/mAB)*((mKpm+mK0)/mAB); if (mKpmpK0Sqr>1.) mKpmpK0Sqr=1.; double rho1=sqrt( (1-mPiMmEtaSqr)* (1-mPiMpEtaSqr) ); double rho2=sqrt( (1-mKpmmK0Sqr)* (1-mKpmpK0Sqr) ); complex<double> result=g_KK*g_KK/( __mass0*__mass0 - mAB*mAB - i * (rho1*g_EtaPi*g_EtaPi+rho2*g_KK*g_KK) ); return result; } complex<double> FlatteFkt(const Vector4<double> &__p4, std::pair<const double, const double>& decPair1, std::pair<const double , const double>& decPair2, double __mass0, double g1, double g2){ complex<double> i(0.,1.); const double m1a=decPair1.first; const double m1b=decPair1.second; const double m2a=decPair2.first; const double m2b=decPair2.second; double mAB=__p4.Mass(); //calculate gammas with phase-space factors complex<double> gamma11=g1*breakupMomQ(mAB, m1a, m1b); complex<double> gamma22=g2*breakupMomQ(mAB, m2a, m2b); // double ph1Sqr=mAB*mAB/4-m1a*m1b; // complex<double> gamma11(0.,0.); // if (ph1Sqr>=0.) gamma11=complex<double>( g1*sqrt(ph1Sqr), 0.); // else gamma11=complex<double>(0., g1*sqrt(-ph1Sqr)); // double ph2Sqr=mAB*mAB/4-m2a*m2b; // complex<double> gamma22(0.,0.); // if (ph2Sqr>=0.) gamma22=complex<double>(g2*sqrt(ph2Sqr), 0.); // else gamma22=complex<double>(0., g2*sqrt(-ph2Sqr)); complex<double> gammaLow(0.,0.); if( (m1a+m1b) < (m2a+m2b) ) gammaLow=gamma11; else gammaLow=gamma22; complex<double> result=__mass0*sqrt(gammaLow*gamma11)/( __mass0*__mass0 - mAB*mAB - i * __mass0 * (gamma11+gamma22) ); return result; } //_____________________________________________________________________________ complex<double> ReggePropagator(double __t,double __s,double __a,double __b, const Spin &__spin,int __sig,int __exp_fact){ complex<double> prop,numerator,denominator; double alpha = __a*__t + __b; // trajectory double pi = 3.1415926535; complex<double> i(0.,1.); numerator = pow(__s,alpha - __spin)*pi*__a; numerator *= ((double)__sig + ((double)__exp_fact)*exp(-i*pi*alpha)); double gamma_arg = alpha + 1. - __spin; if(gamma_arg < 0.) denominator = 2*pi/(abs(gamma_arg)*Gamma(abs(gamma_arg))); else if(gamma_arg == 0.) denominator = 2*pi; else denominator = 2*sin(pi*gamma_arg)*Gamma(gamma_arg); prop = numerator/denominator; return prop; } //_____________________________________________________________________________ Spin GetSpin(const string &__spin){ Spin j; string::size_type div_pos = __spin.find("/"); if(div_pos != string::npos){ string tmp; tmp.assign(__spin,0,div_pos); double numer = atof(tmp.c_str()); tmp.assign(__spin,div_pos + 1,__spin.size() - div_pos - 1); double denom = atof(tmp.c_str()); j = numer/denom; } else j = atof(__spin.c_str()); return j; } //_____________________________________________________________________________ void Wigner_d(const Spin &__jmax,double __beta, map<Spin,map<Spin,map<Spin,double> > > &__d){ __d.clear(); Spin jmin,one_half = 1/2.; if(__jmax == 0.){ __d[0][0][0] = 1.; return; } double cb = cos(__beta); double sb = sin(__beta); // j=1 d's map<Spin,map<Spin,double> > d1; d1[1][1] = (1+cb)/2.; d1[1][0] = -sb/sqrt(2.); d1[1][-1] = (1-cb)/2.; d1[0][1] = sb/sqrt(2.); d1[0][0] = cb; d1[0][-1] = -sb/sqrt(2.); d1[-1][1] = (1-cb)/2.; d1[-1][0] = sb/sqrt(2.); d1[-1][-1] = (1+cb)/2.; if(__jmax.Denominator() == 1){ // integral spins __d[0][0][0] = 1.0; if(__jmax == 0.) return; __d[1][1][1] = d1[1][1]; __d[1][1][0] = d1[1][0]; __d[1][1][-1] = d1[1][-1]; __d[1][0][1] = d1[0][1]; __d[1][0][0] = d1[0][0]; __d[1][0][-1] = d1[0][-1]; __d[1][-1][1] = d1[-1][1]; __d[1][-1][0] = d1[-1][0]; __d[1][-1][-1] = d1[-1][-1]; if(__jmax == 1.) return; jmin = 2.; } else { // half-integral spins __d[one_half][one_half][one_half] = cos(__beta/2.); __d[one_half][one_half][-one_half] = -sin(__beta/2.); __d[one_half][-one_half][one_half] = sin(__beta/2.); __d[one_half][-one_half][-one_half] = cos(__beta/2.); if(__jmax == one_half) return; jmin = 3/2.; } for(Spin j = jmin; j <= __jmax; j++){ for(Spin m = -j; m <= j; m++){ for(Spin n = -j; n <= j; n++){ double djmn = 0.; for(Spin mm = -1; mm <= 1; mm++){ for(Spin nn = -1; nn <= 1; nn++){ djmn += Clebsch(j-1,m-mm,1,mm,j,m)*Clebsch(j-1,n-nn,1,nn,j,n) *__d[j-1][m-mm][n-nn]*d1[mm][nn]; } } __d[j][m][n] = djmn; } } } } //_____________________________________________________________________________ void Wigner_D(const Spin &__jmax,double __alpha,double __beta,double __gamma, map<Spin,map<Spin,map<Spin,complex<double> > > > &__D){ complex<double> i(0.,1.); map<Spin,map<Spin,map<Spin,double> > > d; Wigner_d(__jmax,__beta,d); Spin jmin; if(d.find(0) != d.end()) jmin = 0; else jmin = 1/2.; for(Spin j = jmin; j <= __jmax; j++){ for(Spin m = -j; m <= j; m++){ for(Spin n = -j; n <= j; n++) __D[j][m][n] = exp(-i*(m*__alpha + n*__gamma))*d[j][m][n]; } } } //_____________________________________________________________________________ complex<double> phaseSpaceFac(double mass, double massDec1, double massDec2){ complex<double> result(0.,0.); if(mass < 1e-8) { std::cout << "mass " << mass << " very close to 0 or negative; not possible to calculate phasespace factor " <<std::endl; assert(0); } double termPlus=(massDec1+massDec2)/mass; double termMinus=(massDec1-massDec2)/mass; double tmpVal=(1.-termPlus*termPlus) * (1.-termMinus*termMinus); // double tmpVal=mass*mass/4-massDec1*massDec2; if (tmpVal>=0.) result = complex<double> (sqrt(tmpVal), 0. ); else result = complex<double> (0., sqrt(-tmpVal)); return result; } complex<double> breakupMomQ(double mass, double massDec1, double massDec2){ complex<double> result=phaseSpaceFac(mass, massDec1, massDec2)*mass/2.; return result; }