//************************************************************************// // // // Copyright 2013 Bertram Kopf (bertram@ep1.rub.de) // // Julian Pychy (julian@ep1.rub.de) // // - Ruhr-Universität Bochum // // // // This file is part of Pawian. // // // // Pawian is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // Pawian is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // You should have received a copy of the GNU General Public License // // along with Pawian. If not, see <http://www.gnu.org/licenses/>. // // // //************************************************************************// // AbsLh class definition file. -*- C++ -*- // Copyright 2012 Bertram Kopf #include <getopt.h> #include <fstream> #include <string> #include <iomanip> #include <vector> #include <thread> #include <boost/thread.hpp> #include "PwaUtils/AbsLh.hh" #include "PwaUtils/AbsEnv.hh" #include "PwaUtils/ParserBase.hh" #include "qft++/relativistic-quantum-mechanics/Utils.hh" #include "ErrLogger/ErrLogger.hh" AbsLh::AbsLh(boost::shared_ptr<AbsLh> theAbsLhPtr): AbsParamHandler() ,_absEnv(theAbsLhPtr->_absEnv) ,_evtDataVec(theAbsLhPtr->getDataVec()) ,_evtMCVec(theAbsLhPtr->getMcVec()) ,_usePhasespace(theAbsLhPtr->_absEnv->parser()->usePhaseSpaceHyp()) ,_phasespaceKey("Phasespace") ,_calcCounter(0) { _noOfThreads = boost::thread::hardware_concurrency(); } AbsLh::AbsLh(AbsEnv* theEnv) : AbsParamHandler() ,_absEnv(theEnv) ,_usePhasespace(theEnv->parser()->usePhaseSpaceHyp()) ,_phasespaceKey("Phasespace") ,_calcCounter(0) { _noOfThreads = boost::thread::hardware_concurrency(); } AbsLh::~AbsLh() { } void AbsLh::ThreadfuncData(unsigned int minEvent, unsigned int maxEvent, double& logLH_data, double& weightSum, fitParams& theParamVal){ logLH_data=0.; weightSum=0.; for (unsigned int i=minEvent; i<=maxEvent; ++i){ EvtData* currentEvtData=_evtDataVec[i]; double intensity=calcEvtIntensity(currentEvtData, theParamVal); logLH_data+=(currentEvtData->evtWeight)*log(intensity); weightSum+= currentEvtData->evtWeight; } } void AbsLh::ThreadfuncMc(unsigned int minEvent, unsigned int maxEvent, double& lh_mc, fitParams& theParamVal ){ lh_mc=0.; for (unsigned int i=minEvent; i<=maxEvent; ++i){ EvtData* currentEvtData=_evtMCVec[i]; double intensity=calcEvtIntensity(currentEvtData, theParamVal); lh_mc+=intensity; } } double AbsLh::calcLogLh(fitParams& theParamVal){ _calcCounter++; if (_cacheAmps && _calcCounter>1) checkRecalculation(theParamVal); updateFitParams(theParamVal); LHData theLHData; theLHData.logLH_data = theLHData.weightSum = theLHData.LH_mc = 0.0; int eventStepData = _evtDataVec.size() / _noOfThreads; int eventStepMC = _evtMCVec.size() / _noOfThreads; std::vector<std::thread> theThreads; std::vector<LHData> threadDataVec; threadDataVec.resize(_noOfThreads); for(int i = 0; i<_noOfThreads;i++){ int eventMin = i*eventStepData; int eventMax = (i==_noOfThreads-1) ? (_evtDataVec.size() - 1) : (i+1)*eventStepData - 1; theThreads.push_back(std::thread(&AbsLh::ThreadfuncData, this, eventMin, eventMax, std::ref(threadDataVec.at(i).logLH_data), std::ref(threadDataVec.at(i).weightSum), theParamVal)); } for(auto it = theThreads.begin(); it != theThreads.end(); ++it){ (*it).join(); } theThreads.clear(); for(int i = 0; i<_noOfThreads;i++){ int eventMin = i*eventStepMC; int eventMax = (i==_noOfThreads-1) ? (_evtMCVec.size() - 1) : (i+1)*eventStepMC - 1; theThreads.push_back(std::thread(&AbsLh::ThreadfuncMc, this, eventMin, eventMax, std::ref(threadDataVec.at(i).LH_mc), theParamVal)); } for(auto it = theThreads.begin(); it != theThreads.end(); ++it){ (*it).join(); } for(auto it = threadDataVec.begin(); it!= threadDataVec.end(); ++it){ theLHData.logLH_data += (*it).logLH_data; theLHData.weightSum += (*it).weightSum; theLHData.LH_mc += (*it).LH_mc; } return mergeLogLhData(theLHData); } void AbsLh::calcLogLhDataClient(fitParams& theParamVal, LHData& theLHData, std::vector<double>& eventLimits ){ _calcCounter++; if (_cacheAmps && _calcCounter>1) checkRecalculation(theParamVal); updateFitParams(theParamVal); theLHData.logLH_data = theLHData.weightSum = theLHData.LH_mc = 0.0; int numData = eventLimits[1] - eventLimits[0]; int numMC = eventLimits[3] - eventLimits[2]; int eventStepData = numData / _noOfThreads; int eventStepMC = numMC / _noOfThreads; std::vector<std::thread> theThreads; std::vector<LHData> threadDataVec; threadDataVec.resize(_noOfThreads); for(int i = 0; i<_noOfThreads;i++){ int eventMin = i*eventStepData + eventLimits[0]; int eventMax = (i==_noOfThreads-1) ? eventLimits[1] : (i+1)*eventStepData - 1 + eventLimits[0]; theThreads.push_back(std::thread(&AbsLh::ThreadfuncData, this, eventMin, eventMax, std::ref(threadDataVec.at(i).logLH_data), std::ref(threadDataVec.at(i).weightSum), theParamVal)); } for(auto it = theThreads.begin(); it != theThreads.end(); ++it){ (*it).join(); } theThreads.clear(); for(int i = 0; i<_noOfThreads;i++){ int eventMin = i*eventStepMC + eventLimits[2]; int eventMax = (i==_noOfThreads-1) ? eventLimits[3] : (i+1)*eventStepMC - 1 + eventLimits[2]; theThreads.push_back(std::thread(&AbsLh::ThreadfuncMc, this, eventMin, eventMax, std::ref(threadDataVec.at(i).LH_mc), theParamVal)); } for(auto it = theThreads.begin(); it != theThreads.end(); ++it){ (*it).join(); } for(auto it = threadDataVec.begin(); it!= threadDataVec.end(); ++it){ theLHData.logLH_data += (*it).logLH_data; theLHData.weightSum += (*it).weightSum; theLHData.LH_mc += (*it).LH_mc; } } double AbsLh::mergeLogLhData(LHData& theLHData){//double& llh_data, double& weightSum, double& lh_mc){ double logLH=0.; double logLH_mc_Norm=0.; if (theLHData.LH_mc>0.) logLH_mc_Norm=log(theLHData.LH_mc/_evtMCVec.size()); logLH=0.5*theLHData.weightSum *(theLHData.LH_mc/_evtMCVec.size()-1.)*(theLHData.LH_mc/_evtMCVec.size()-1.) -theLHData.logLH_data +theLHData.weightSum*logLH_mc_Norm; Info << "current LH = " << std::setprecision(10) << logLH << endmsg; return logLH; } void AbsLh::setHyps( const std::map<const std::string, bool>& theMap, bool& theHyp, std::string& theKey){ std::map<const std::string, bool>::const_iterator iter= theMap.find(theKey); if (iter !=theMap.end()){ theHyp= iter->second; DebugMsg<< "hypothesis " << iter->first << "\t" << theHyp <<endmsg; _hypMap[iter->first]= iter->second; } else{ Alert << theKey << " does not exist!!!" <<endmsg; exit(0); } } void AbsLh::getDefaultParams(fitParams& fitVal, fitParams& fitErr){ if(_usePhasespace){ fitVal.otherParams[_phasespaceKey]=0.01; fitErr.otherParams[_phasespaceKey]=0.05; } std::vector< boost::shared_ptr<AbsXdecAmp> >::iterator itDecs; for(itDecs=_decAmps.begin(); itDecs!=_decAmps.end(); ++itDecs){ (*itDecs)->getDefaultParams(fitVal, fitErr); } } void AbsLh::cacheAmplitudes(){ _cacheAmps=true; std::vector< boost::shared_ptr<AbsXdecAmp> >::iterator it; for (it=_decAmps.begin(); it!=_decAmps.end(); ++it){ (*it)->cacheAmplitudes(); } } void AbsLh::updateFitParams(fitParams& theParamVal){ std::vector< boost::shared_ptr<AbsXdecAmp> >::iterator it; for (it=_decAmps.begin(); it!=_decAmps.end(); ++it){ (*it)->updateFitParams(theParamVal); } } bool AbsLh::checkRecalculation(fitParams& theParamVal){ bool result=true; std::vector< boost::shared_ptr<AbsXdecAmp> >::iterator it; for (it=_decAmps.begin(); it!=_decAmps.end(); ++it){ if(!(*it)->checkRecalculation(theParamVal)) result=false; } return result; } void AbsLh::setDataVec(std::vector<EvtData*> theVec) { if(_evtDataVec.size()>0){ Alert << "data vector already set!!!" << endmsg; exit(0); } _evtDataVec=theVec; } void AbsLh::setMcVec(std::vector<EvtData*> theVec) { if(_evtMCVec.size()>0){ Alert << "mc vector already set!!!" << endmsg; exit(0); } _evtMCVec=theVec; }