//************************************************************************// // // // Copyright 2013 Bertram Kopf (bertram@ep1.rub.de) // // Julian Pychy (julian@ep1.rub.de) // // - Ruhr-Universität Bochum // // // // This file is part of Pawian. // // // // Pawian is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // Pawian is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // You should have received a copy of the GNU General Public License // // along with Pawian. If not, see <http://www.gnu.org/licenses/>. // // // //************************************************************************// // LSDecAmps class definition file. -*- C++ -*- // Copyright 2012 Bertram Kopf #include <getopt.h> #include <fstream> #include <string> #include <mutex> #include "PwaUtils/LSDecAmps.hh" #include "qft++/relativistic-quantum-mechanics/Utils.hh" #include "PwaUtils/DataUtils.hh" #include "PwaUtils/GlobalEnv.hh" #include "PwaUtils/IsobarLSDecay.hh" #include "PwaUtils/BarrierFactor.hh" #include "Utils/FunctionUtils.hh" #include "Particle/Particle.hh" #include "ErrLogger/ErrLogger.hh" LSDecAmps::LSDecAmps(std::shared_ptr<IsobarLSDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) ,_LSs(theDec->LSAmps()) ,_factorMag(1.) { if(_LSs.size()>0) _factorMag=1./sqrt(_LSs.size()); Particle* daughter1=_decay->daughter1Part(); Particle* daughter2=_decay->daughter2Part(); _parityFactor=daughter1->theParity()*daughter2->theParity()*pow(-1,_JPCPtr->J-daughter1->J()-daughter2->J()); Info << "_parityFactor=\t" << _parityFactor << endmsg; fillCgPreFactor(); } LSDecAmps::LSDecAmps(std::shared_ptr<AbsDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) { Particle* daughter1=_decay->daughter1Part(); Particle* daughter2=_decay->daughter2Part(); _parityFactor=daughter1->theParity()*daughter2->theParity()*pow(-1,_JPCPtr->J-daughter1->J()-daughter2->J()); Info << "_parityFactor=\t" << _parityFactor << endmsg; fillCgPreFactor(); } LSDecAmps::~LSDecAmps() { } complex<double> LSDecAmps::XdecPartAmp(Spin& lamX, Spin& lamDec, short fixDaughterNr, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ complex<double> result(0.,0.); Spin lam1Min=-_Jdaughter1; Spin lam1Max= _Jdaughter1; Spin lam2Min=-_Jdaughter2; Spin lam2Max=_Jdaughter2; if(fixDaughterNr == 1){ lam1Min = lam1Max = lamDec; } else if(fixDaughterNr == 2){ lam2Min = lam2Max = lamDec; } else{ Alert << "Invalid fixDaughterNr in XdecPartAmp." << endmsg; } if(_enabledlamFsDaughter1){ lam1Min=lamFs; lam1Max=lamFs; } else if(_enabledlamFsDaughter2){ lam2Min=lamFs; lam2Max=lamFs; } result=lsLoop(lamX, theData, lam1Min, lam1Max, lam2Min, lam2Max, false); return result; } complex<double> LSDecAmps::XdecAmp(Spin& lamX, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ // Info <<"\nlamX: " << lamX << "\tlamFs: " << lamFs << endmsg; complex<double> result(0.,0.); if( fabs(lamX) > _JPCPtr->J) return result; int evtNo=theData->evtNo; Id2StringType currentSpinIndex=FunctionUtils::spin2Index(lamX,lamFs); // unsigned short currentSpinIndex=lamX.ToIndex()*100+lamFs.ToIndex(); if ( _cacheAmps && !_recalculate){ result=_cachedAmpShortMap.at(evtNo).at(currentSpinIndex); // result=_cachedAmpMap.at(evtNo).at(lamX).at(lamFs); result*=_absDyn->eval(theData, grandmaAmp); return result; } // Spin lam1Min=-_Jdaughter1; Spin lam1Min=-_Jdaughter1; Spin lam1Max= _Jdaughter1; Spin lam2Min=-_Jdaughter2; Spin lam2Max=_Jdaughter2; if(_enabledlamFsDaughter1){ lam1Min=lamFs; lam1Max=lamFs; } else if(_enabledlamFsDaughter2){ lam2Min=lamFs; lam2Max=lamFs; } result=lsLoop(lamX, theData, lam1Min, lam1Max, lam2Min, lam2Max, true, lamFs ); if ( _cacheAmps){ theMutex.lock(); _cachedAmpShortMap[evtNo][currentSpinIndex]=result; // _cachedAmpMap[evtNo][lamX][lamFs]=result; theMutex.unlock(); } result*=_absDyn->eval(theData, grandmaAmp); if(result.real()!=result.real()){ Info << "dyn name: " << _absDyn->name() << "\nname(): " << name() << endmsg; Alert << "result:\t" << result << endmsg; exit(0); } return result; } complex<double> LSDecAmps::lsLoop(Spin& lamX, EvtData* theData, Spin& lam1Min, Spin& lam1Max, Spin& lam2Min, Spin& lam2Max, bool withDecs, Spin lamFs ){ // Info << "\n_JPCPtr->J: " << _JPCPtr->J << "\tlamX: " << lamX << "\tlam1Min: " << lam1Min << "\tlam2Min: " << lam2Min << "\tlam1Max: " << lam1Max << "\tlam2Max: " << lam2Max << "\tlamFs: " <<lamFs << endmsg; complex<double> result(0.,0.); // map<Spin,complex<double> >& currentWignerDsMap=theData->WignerDsString.at(_wignerDKey).at(_JPCPtr->J).at(lamX); // Spin currentJ=_JPCPtr->J; std::map<Id3StringType, complex<double> >& currentWignerDMap=theData->WignerDStringId.at(_wignerDKey); std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ map<Spin,map<Spin, double > >& currentCgFactor=_cgPreFactor.at(*it); double theMag=_currentParamMags.at(*it); double thePhi=_currentParamPhis.at(*it); complex<double> expi(cos(thePhi), sin(thePhi)); complex<double> tmpResult(0.,0.); for(Spin lambda1=lam1Min; lambda1<=lam1Max; ++lambda1){ for(Spin lambda2=lam2Min; lambda2<=lam2Max; ++lambda2){ Spin lambda = lambda1-lambda2; if( fabs(lambda)>_JPCPtr->J || fabs(lambda)>(*it)->S) continue; Id3StringType IdJLamXLam12=FunctionUtils::spin3Index(_J, lamX, lambda); complex<double> amp = theMag*expi*currentCgFactor.at(lambda1).at(lambda2)*conj(currentWignerDMap.at(IdJLamXLam12)); // complex<double> amp = theMag*expi*currentCgFactor.at(lambda1).at(lambda2)*conj(currentWignerDsMap.at(lambda)); if(withDecs) amp *=daughterAmp(lambda1, lambda2, theData, lamFs); tmpResult+=amp; } } if(absDec()->useProdBarrier()) tmpResult *= BarrierFactor::BlattWeisskopf((*it)->L, theData->DoubleString[_wignerDKey], 0.197); result+=tmpResult; } result*=_preFactor*_isospinCG; if(result.real()!=result.real()){ Alert << "result:\t" << result << endmsg; exit(0); } return result; } void LSDecAmps::getDefaultParams(fitParams& fitVal, fitParams& fitErr){ std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentMagValMap; std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentPhiValMap; std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentMagErrMap; std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentPhiErrMap; std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ currentMagValMap[*itLS]=_factorMag; currentPhiValMap[*itLS]=0.; currentMagErrMap[*itLS]=_factorMag; currentPhiErrMap[*itLS]=0.3; } fitVal.MagsLS[_key]=currentMagValMap; fitVal.PhisLS[_key]=currentPhiValMap; fitErr.MagsLS[_key]=currentMagErrMap; fitErr.PhisLS[_key]=currentPhiErrMap; _absDyn->getDefaultParams(fitVal, fitErr); if(!_daughter1IsStable) _decAmpDaughter1->getDefaultParams(fitVal, fitErr); if(!_daughter2IsStable) _decAmpDaughter2->getDefaultParams(fitVal, fitErr); } void LSDecAmps::print(std::ostream& os) const{ return; //dummy } bool LSDecAmps::checkRecalculation(fitParams& theParamVal){ _recalculate=false; if(_absDyn->checkRecalculation(theParamVal)) _recalculate=true; if(!_daughter1IsStable) { if(_decAmpDaughter1->checkRecalculation(theParamVal)) _recalculate=true; } if(!_daughter2IsStable){ if(_decAmpDaughter2->checkRecalculation(theParamVal)) _recalculate=true; } if(!_recalculate){ std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess >& magMap=theParamVal.MagsLS[_key]; std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess >& phiMap=theParamVal.PhisLS[_key]; std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ double theMag=magMap[*it]; double thePhi=phiMap[*it]; if(!CheckDoubleEquality(theMag, _currentParamMags[*it])){ _recalculate=true; return _recalculate; } if(!CheckDoubleEquality(thePhi, _currentParamPhis[*it])){ _recalculate=true; return _recalculate; } } } return _recalculate; } void LSDecAmps::updateFitParams(fitParams& theParamVal){ std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess >& magMap=theParamVal.MagsLS[_key]; std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess >& phiMap=theParamVal.PhisLS[_key]; std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ double theMag=magMap[*it]; double thePhi=phiMap[*it]; _currentParamMags[*it]=theMag; _currentParamPhis[*it]=thePhi; } _absDyn->updateFitParams(theParamVal); if(!_daughter1IsStable) _decAmpDaughter1->updateFitParams(theParamVal); if(!_daughter2IsStable) _decAmpDaughter2->updateFitParams(theParamVal); } void LSDecAmps::fillCgPreFactor(){ std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ for(Spin lambda1=-_Jdaughter1; lambda1<=_Jdaughter1; ++lambda1){ for(Spin lambda2=-_Jdaughter2; lambda2<=_Jdaughter2; ++lambda2){ Spin lambda = lambda1-lambda2; if( fabs(lambda)>_JPCPtr->J || fabs(lambda)>(*it)->S) continue; _cgPreFactor[*it][lambda1][lambda2]=sqrt(2.*(*it)->L+1) *Clebsch((*it)->L, 0, (*it)->S, lambda, _JPCPtr->J, lambda) *Clebsch(_Jdaughter1, lambda1, _Jdaughter2, -lambda2, (*it)->S, lambda ); } } } }