//************************************************************************// // // // Copyright 2013 Bertram Kopf (bertram@ep1.rub.de) // // Julian Pychy (julian@ep1.rub.de) // // - Ruhr-Universität Bochum // // // // This file is part of Pawian. // // // // Pawian is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // Pawian is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // You should have received a copy of the GNU General Public License // // along with Pawian. If not, see <http://www.gnu.org/licenses/>. // // // //************************************************************************// // TensorDecAmps class definition file. -*- C++ -*- // Copyright 2012 Bertram Kopf #include <getopt.h> #include <fstream> #include <string> #include <mutex> #include "PwaUtils/TensorDecAmps.hh" #include "qft++/relativistic-quantum-mechanics/Utils.hh" #include "PwaUtils/DataUtils.hh" #include "PwaUtils/IsobarTensorDecay.hh" #include "Particle/Particle.hh" #include "ErrLogger/ErrLogger.hh" TensorDecAmps::TensorDecAmps(std::shared_ptr<IsobarTensorDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) ,_LSs(theDec->LSAmps()) ,_factorMag(1.) { if(_LSs.size()>0) _factorMag/=sqrt(_LSs.size()); } TensorDecAmps::TensorDecAmps(std::shared_ptr<AbsDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) ,_factorMag(1.) { if(_LSs.size()>0) _factorMag/=sqrt(_LSs.size()); } TensorDecAmps::~TensorDecAmps() { } complex<double> TensorDecAmps::XdecPartAmp(Spin& lamX, Spin& lamDec, short fixDaughterNr, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ Spin lam1Min=-_Jdaughter1; Spin lam1Max= _Jdaughter1; Spin lam2Min=-_Jdaughter2; Spin lam2Max=_Jdaughter2; if(fixDaughterNr == 1){ lam1Min = lam1Max = lamDec; } else if(fixDaughterNr == 2){ lam2Min = lam2Max = lamDec; } else{ Alert << "Invalid fixDaughterNr in XdecPartAmp." << endmsg; } if(_enabledlamFsDaughter1){ lam1Min=lamFs; lam1Max=lamFs; } else if(_enabledlamFsDaughter2){ lam2Min=lamFs; lam2Max=lamFs; } complex<double> result=lsLoop(grandmaAmp, lamX, theData, lam1Min, lam1Max, lam2Min, lam2Max, false); return result; } complex<double> TensorDecAmps::XdecAmp(Spin& lamX, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ complex<double> result(0.,0.); if( fabs(lamX) > _JPCPtr->J) return result; int evtNo=theData->evtNo; Id2StringType currentSpinIndex=FunctionUtils::spin2Index(lamX,lamFs); if ( _cacheAmps && !_recalculate){ result=_cachedAmpMap.at(evtNo).at(_absDyn->grandMaKey(grandmaAmp)).at(currentSpinIndex); return result; } if(_enabledlamFsDaughter1) result=lsLoop(grandmaAmp, lamX, theData, lamFs, lamFs, _lam2Min, _lam2Max, true, lamFs ); else if(_enabledlamFsDaughter2) result=lsLoop(grandmaAmp, lamX, theData, _lam1Min, _lam1Max, lamFs, lamFs, true, lamFs ); else result=lsLoop(grandmaAmp, lamX, theData, _lam1Min, _lam1Max, _lam2Min, _lam2Max, true, lamFs ); if ( _cacheAmps){ theMutex.lock(); _cachedAmpMap[evtNo][_absDyn->grandMaKey(grandmaAmp)][currentSpinIndex]=result; theMutex.unlock(); } return result; } complex<double> TensorDecAmps::lsLoop(AbsXdecAmp* grandmaAmp, Spin lamX, EvtData* theData, Spin lam1Min, Spin lam1Max, Spin lam2Min, Spin lam2Max, bool withDecs, Spin lamFs ){ complex<double> result(0.,0.); map<unsigned short, map<Id3StringType, complex<double> > >& currentLS3SpinMap=theData->ComplexLS3Spin.at(_decay->nameId()); std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ map<Id3StringType, complex<double> >& current3SpinMap = currentLS3SpinMap.at((*it)->idnumberLS); complex<double> theMagExpi=_currentParamMagExpi.at(*it); complex<double> tmpResult(0.,0.); for(Spin lambda1=lam1Min; lambda1<=lam1Max; ++lambda1){ for(Spin lambda2=lam2Min; lambda2<=lam2Max; ++lambda2){ Id3StringType IdLamXLam1Lam2=FunctionUtils::spin3Index(lamX, lambda1, lambda2); complex<double> amp = theMagExpi*current3SpinMap.at(IdLamXLam1Lam2); if(withDecs) amp *=daughterAmp(lambda1, lambda2, theData, lamFs); tmpResult+=amp; } } if (_absDyn->isLdependent()) tmpResult*=_cachedDynLSMap.at(std::this_thread::get_id()).at((*it)->L); result+=tmpResult; } if (!_absDyn->isLdependent()) result *=_cachedDynMap.at(std::this_thread::get_id()).at(_absDyn->grandMaKey(grandmaAmp)); result*=_isospinCG; return result; } // void TensorDecAmps::getDefaultParams(fitParCol& fitVal, fitParCol& fitErr){ // std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentMagValMap; // std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentPhiValMap; // std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentMagErrMap; // std::map< std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess > currentPhiErrMap; // std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; // for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ // currentMagValMap[*itLS]=_factorMag; // currentPhiValMap[*itLS]=0.; // currentMagErrMap[*itLS]=_factorMag/3.; // currentPhiErrMap[*itLS]=0.3; // } // fitVal.MagsLS[_key]=currentMagValMap; // fitVal.PhisLS[_key]=currentPhiValMap; // fitErr.MagsLS[_key]=currentMagErrMap; // fitErr.PhisLS[_key]=currentPhiErrMap; // _absDyn->getDefaultParams(fitVal, fitErr); // if(!_daughter1IsStable) _decAmpDaughter1->getDefaultParams(fitVal, fitErr); // if(!_daughter2IsStable) _decAmpDaughter2->getDefaultParams(fitVal, fitErr); // } void TensorDecAmps::fillDefaultParams(std::shared_ptr<AbsPawianParameters> fitPar){ std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ //fill magnitude std::string magName=(*itLS)->name()+_key+"Mag"; double valMag=_factorMag; double errMag=_factorMag/2.; // double minMag=0.; // double maxMag=_factorMag+30.*errMag; fitPar->Add(magName, valMag, errMag); // fitPar->SetLimits(magName, minMag, maxMag); std::string phiName=(*itLS)->name()+_key+"Phi"; double valPhi=0.; double errPhi=0.2; //no limits for phi parameter fitPar->Add(phiName, valPhi, errPhi); } _absDyn->fillDefaultParams(fitPar); if(!_daughter1IsStable) _decAmpDaughter1->fillDefaultParams(fitPar); if(!_daughter2IsStable) _decAmpDaughter2->fillDefaultParams(fitPar); } void TensorDecAmps::fillParamNameList(){ _paramNameList.clear(); std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ std::string magName=(*itLS)->name()+_key+"Mag"; _paramNameList.push_back(magName); std::string phiName=(*itLS)->name()+_key+"Phi"; _paramNameList.push_back(phiName); } } void TensorDecAmps::print(std::ostream& os) const{ return; //dummy } void TensorDecAmps::updateFitParams(std::shared_ptr<AbsPawianParameters> fitPar){ std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ //magnitude std::string magName=(*itLS)->name()+_key+"Mag"; std::string phiName=(*itLS)->name()+_key+"Phi"; double theMag=fabs(fitPar->Value(magName)); double thePhi=fitPar->Value(phiName); _currentParamMags[*itLS]=theMag; _currentParamPhis[*itLS]=thePhi; complex<double> expi(cos(thePhi), sin(thePhi)); _currentParamMagExpi[*itLS]=theMag*expi; } _absDyn->updateFitParams(fitPar); if(!_daughter1IsStable) _decAmpDaughter1->updateFitParams(fitPar); if(!_daughter2IsStable) _decAmpDaughter2->updateFitParams(fitPar); } void TensorDecAmps::calcDynamics(EvtData* theData, AbsXdecAmp* grandmaAmp){ if(!_recalculate) return; if(!_absDyn->isLdependent()){ AbsXdecAmp::calcDynamics(theData, grandmaAmp); return; } std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ theMutex.lock(); _cachedDynLSMap[std::this_thread::get_id()][(*it)->L]=_absDyn->eval(theData, grandmaAmp, (*it)->L); theMutex.unlock(); } if(!_daughter1IsStable) _decAmpDaughter1->calcDynamics(theData, this); if(!_daughter2IsStable) _decAmpDaughter2->calcDynamics(theData, this); return; }