//************************************************************************// // // // Copyright 2014 Bertram Kopf (bertram@ep1.rub.de) // // Julian Pychy (julian@ep1.rub.de) // // - Ruhr-Universität Bochum // // // // This file is part of Pawian. // // // // Pawian is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // Pawian is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // You should have received a copy of the GNU General Public License // // along with Pawian. If not, see <http://www.gnu.org/licenses/>. // // // //************************************************************************// // LSDecAmps class definition file. -*- C++ -*- // Copyright 2014 Bertram Kopf #include <getopt.h> #include <fstream> #include <string> #include <mutex> #include "PwaUtils/LSDecAmps.hh" #include "qft++/relativistic-quantum-mechanics/Utils.hh" #include "PwaUtils/DataUtils.hh" #include "PwaUtils/GlobalEnv.hh" #include "PwaUtils/IsobarLSDecay.hh" #include "PwaDynamics/BarrierFactor.hh" #include "Utils/FunctionUtils.hh" #include "Particle/Particle.hh" #include "ErrLogger/ErrLogger.hh" #include "FitParams/AbsPawianParameters.hh" LSDecAmps::LSDecAmps(std::shared_ptr<IsobarLSDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) ,_LSs(theDec->LSAmps()) ,_factorMag(1.) ,_Smax(0) { std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ if( (*it)->S > _Smax ) _Smax=(*it)->S; } if(_LSs.size()>0) _factorMag=1./sqrt(_LSs.size()); Particle* daughter1=_decay->daughter1Part(); Particle* daughter2=_decay->daughter2Part(); _parityFactor=daughter1->theParity()*daughter2->theParity()*pow(-1,_JPCPtr->J-daughter1->J()-daughter2->J()); Info << "_parityFactor=\t" << _parityFactor << endmsg; fillCgPreFactor(); } LSDecAmps::LSDecAmps(std::shared_ptr<AbsDecay> theDec, ChannelID channelID) : AbsXdecAmp(theDec, channelID) ,_Smax(0) { std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ if( (*it)->S > _Smax ) _Smax=(*it)->S; } Particle* daughter1=_decay->daughter1Part(); Particle* daughter2=_decay->daughter2Part(); _parityFactor=daughter1->theParity()*daughter2->theParity()*pow(-1,_JPCPtr->J-daughter1->J()-daughter2->J()); Info << "_parityFactor=\t" << _parityFactor << endmsg; fillCgPreFactor(); } LSDecAmps::~LSDecAmps() { } complex<double> LSDecAmps::XdecPartAmp(Spin& lamX, Spin& lamDec, short fixDaughterNr, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ complex<double> result(0.,0.); Spin lam1Min=-_Jdaughter1; Spin lam1Max= _Jdaughter1; Spin lam2Min=-_Jdaughter2; Spin lam2Max=_Jdaughter2; if(fixDaughterNr == 1){ lam1Min = lam1Max = lamDec; } else if(fixDaughterNr == 2){ lam2Min = lam2Max = lamDec; } else{ Alert << "Invalid fixDaughterNr in XdecPartAmp." << endmsg; } if(_enabledlamFsDaughter1){ lam1Min=lamFs; lam1Max=lamFs; } else if(_enabledlamFsDaughter2){ lam2Min=lamFs; lam2Max=lamFs; } result=lsLoop( grandmaAmp, lamX, theData, lam1Min, lam1Max, lam2Min, lam2Max, false); return result; } complex<double> LSDecAmps::XdecAmp(Spin& lamX, EvtData* theData, Spin& lamFs, AbsXdecAmp* grandmaAmp){ complex<double> result(0.,0.); if( fabs(lamX) > _JPCPtr->J) return result; int evtNo=theData->evtNo; Id2StringType currentSpinIndex=FunctionUtils::spin2Index(lamX,lamFs); if ( _cacheAmps && !_recalculate){ result=_cachedAmpMap.at(evtNo).at(_absDyn->grandMaKey(grandmaAmp)).at(currentSpinIndex); return result; } if(_enabledlamFsDaughter1) result=lsLoop(grandmaAmp, lamX, theData, lamFs, lamFs, _lam2Min, _lam2Max, true, lamFs); else if(_enabledlamFsDaughter2) result=lsLoop(grandmaAmp, lamX, theData, _lam1Min, _lam1Max, lamFs, lamFs, true, lamFs); else result=lsLoop(grandmaAmp, lamX, theData, _lam1Min, _lam1Max, _lam2Min, _lam2Max, true, lamFs); if ( _cacheAmps){ theMutex.lock(); _cachedAmpMap[evtNo][_absDyn->grandMaKey(grandmaAmp)][currentSpinIndex]=result; theMutex.unlock(); } if(result.real()!=result.real()){ Info << "dyn name: " << _absDyn->name() << "\nname(): " << name() << endmsg; Alert << "result:\t" << result << endmsg; exit(0); } return result; } complex<double> LSDecAmps::lsLoop(AbsXdecAmp* grandmaAmp, Spin& lamX, EvtData* theData, Spin& lam1Min, Spin& lam1Max, Spin& lam2Min, Spin& lam2Max, bool withDecs, Spin lamFs ){ complex<double> result(0.,0.); std::vector< std::shared_ptr<const LScomb> >::iterator it; std::map<Id3StringType, complex<double> >& currentWignerDMap=theData->WignerDIdId3.at(_decay->wigDWigDRefId()); for(Spin lambda1=lam1Min; lambda1<=lam1Max; ++lambda1){ for(Spin lambda2=lam2Min; lambda2<=lam2Max; ++lambda2){ Spin lambda = lambda1-lambda2; if( fabs(lambda)>_JPCPtr->J || fabs(lambda)>_Smax) continue; map<std::shared_ptr<const LScomb>, double, pawian::Collection::SharedPtrLess >& cgPre_LSMap=_cgPreFactor_LamLamLSMap.at(lambda1).at(lambda2); complex<double> amp(0.,0.); for (it=_LSs.begin(); it!=_LSs.end(); ++it){ if( fabs(lambda)>(*it)->S) continue; if (_absDyn->isLdependent()) amp+=_currentParamPreFacMagExpi.at(*it)*cgPre_LSMap.at(*it)*_cachedDynLSMap.at(std::this_thread::get_id()).at((*it)->L); else amp+=_currentParamPreFacMagExpi.at(*it)*cgPre_LSMap.at(*it); } Id3StringType IdJLamXLam12=FunctionUtils::spin3Index(_J, lamX, lambda); amp *= conj(currentWignerDMap.at(IdJLamXLam12)); if(withDecs) amp *=daughterAmp(lambda1, lambda2, theData, lamFs); result+=amp; } } if (!_absDyn->isLdependent()) result *=_cachedDynMap.at(std::this_thread::get_id()).at(_absDyn->grandMaKey(grandmaAmp)); return result; } void LSDecAmps::calcDynamics(EvtData* theData, AbsXdecAmp* grandmaAmp){ if(!_recalculate) return; if(!_absDyn->isLdependent()){ AbsXdecAmp::calcDynamics(theData, grandmaAmp); return; } std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ theMutex.lock(); _cachedDynLSMap[std::this_thread::get_id()][(*it)->L]=_absDyn->eval(theData, grandmaAmp, (*it)->L); theMutex.unlock(); } if(!_daughter1IsStable) _decAmpDaughter1->calcDynamics(theData, this); if(!_daughter2IsStable) _decAmpDaughter2->calcDynamics(theData, this); return; } void LSDecAmps::fillDefaultParams(std::shared_ptr<AbsPawianParameters> fitPar){ std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ //fill magnitude std::string magName=(*itLS)->name()+_key+"Mag"; double valMag=_factorMag; double errMag=_factorMag/2.; // double minMag=0.; // double maxMag=_factorMag+30.*errMag; fitPar->Add(magName, valMag, errMag); // fitPar->SetLimits(magName, minMag, maxMag); std::string phiName=(*itLS)->name()+_key+"Phi"; double valPhi=0.; double errPhi=0.2; //no limits for phi parameter fitPar->Add(phiName, valPhi, errPhi); } _absDyn->fillDefaultParams(fitPar); if(!_daughter1IsStable) _decAmpDaughter1->fillDefaultParams(fitPar); if(!_daughter2IsStable) _decAmpDaughter2->fillDefaultParams(fitPar); } void LSDecAmps::fillParamNameList(){ _paramNameList.clear(); std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ //magnitude std::string magName=(*itLS)->name()+_key+"Mag"; _paramNameList.push_back(magName); //phi std::string phiName=(*itLS)->name()+_key+"Phi"; _paramNameList.push_back(phiName); } } void LSDecAmps::print(std::ostream& os) const{ return; //dummy } void LSDecAmps::updateFitParams(std::shared_ptr<AbsPawianParameters> fitPar){ std::vector< std::shared_ptr<const LScomb> >::const_iterator itLS; for(itLS=_LSs.begin(); itLS!=_LSs.end(); ++itLS){ //fill magnitude std::string magName=(*itLS)->name()+_key+"Mag"; double theMag= fabs(fitPar->Value(magName)); std::string phiName=(*itLS)->name()+_key+"Phi"; double thePhi=fitPar->Value(phiName); _currentParamMags[*itLS]=theMag; _currentParamPhis[*itLS]=thePhi; complex<double> expi(cos(thePhi), sin(thePhi)); _currentParamMagExpi[*itLS]=theMag*expi; _currentParamPreFacMagExpi[*itLS]=_preFactor*_isospinCG*theMag*expi; } _absDyn->updateFitParams(fitPar); if(!_daughter1IsStable) _decAmpDaughter1->updateFitParams(fitPar); if(!_daughter2IsStable) _decAmpDaughter2->updateFitParams(fitPar); } void LSDecAmps::fillCgPreFactor(){ std::vector< std::shared_ptr<const LScomb> >::iterator it; for (it=_LSs.begin(); it!=_LSs.end(); ++it){ for(Spin lambda1=-_Jdaughter1; lambda1<=_Jdaughter1; ++lambda1){ for(Spin lambda2=-_Jdaughter2; lambda2<=_Jdaughter2; ++lambda2){ Spin lambda = lambda1-lambda2; if( fabs(lambda)>_JPCPtr->J || fabs(lambda)>(*it)->S) continue; _cgPreFactor[*it][lambda1][lambda2]=sqrt(2.*(*it)->L+1) *Clebsch((*it)->L, 0, (*it)->S, lambda, _JPCPtr->J, lambda) *Clebsch(_Jdaughter1, lambda1, _Jdaughter2, -lambda2, (*it)->S, lambda ); _cgPreFactor_LamLamLSMap[lambda1][lambda2][*it]=sqrt(2.*(*it)->L+1) *Clebsch((*it)->L, 0, (*it)->S, lambda, _JPCPtr->J, lambda) *Clebsch(_Jdaughter1, lambda1, _Jdaughter2, -lambda2, (*it)->S, lambda ); } } } } // void LSDecAmps::retrieveWignerDs(EvtData* theData){ // }